【题目】已知椭圆的左、右焦点为别为F1、F2,且过点和.
(1)求椭圆的标准方程;
(2)如图,点A为椭圆上一位于x轴上方的动点,AF2的延长线与椭圆交于点B,AO的延长线与椭圆交于点C,求△ABC面积的最大值,并写出取到最大值时直线BC的方程.
【答案】(1) (2)y=
【解析】
(1)将两点代入椭圆方程,求出a,b,然后求解椭圆的标准方程.
(2)设AF2的方程为x=ty+1,联立直线与椭圆方程,利用韦达定理以及弦长公式,点到直线的距离求解三角形的面积结合基本不等式求解最值,然后求解BC的方程即可.
解:(1)将两点代入椭圆方程,有解得,
所以椭圆的标准方程为.
(2)因为A在x轴上方,可知AF2斜率不为0,故可以设AF2的方程为x=ty+1,,
得,所以,
设原点到直线AF2的距离为d,则,
所以S△ABC=2S△OAB
=
=
=,△ABC面积的最大值为.
在t=0时取到等号成立,此时AB的方程为:x=1,
可得,A(1,),B(1,-),C(-1,),
此时BC的方程为:y=,
科目:高中数学 来源: 题型:
【题目】已知在图1所示的梯形中,,于点,且.将梯形沿对折,使平面平面,如图2所示,连接,取的中点.
(1)求证:平面平面;
(2)在线段上是否存在点,使得直线平面?若存在,试确定点的位置,并给予证明;若不存在,请说明理由;
(3)设,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右顶点为,上顶点为.已知椭圆的离心率为,.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线:与椭圆交于,两点,且点在第二象限.与延长线交于点,若的面积是面积的3倍,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,是椭圆上一点,轴,.
(1)求椭圆的标准方程;
(2)若直线与椭圆交于、两点,线段的中点为,为坐标原点,且,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确命题的个数是( )
①命题“函数的最小值不为”是假命题;
②“”是“”的必要不充分条件;③若为假命题,则, 均为假命题;
④若命题: , ,则: , ;
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com