精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,圆C的参数方程 (φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是2ρsin(θ+ )=3 ,射线OM:θ= 与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

【答案】
(1)解:利用cos2φ+sin2φ=1,把圆C的参数方程 (φ为参数)化为(x﹣1)2+y2=1,

∴ρ2﹣2ρcosθ=0,即ρ=2cosθ


(2)解:设(ρ1,θ1)为点P的极坐标,由 ,解得

设(ρ2,θ2)为点Q的极坐标,由 ,解得

∵θ12,∴|PQ|=|ρ1﹣ρ2|=2.

∴|PQ|=2


【解析】解:(I)利用cos2φ+sin2φ=1,即可把圆C的参数方程化为直角坐标方程.(II)设(ρ1 , θ1)为点P的极坐标,由 ,联立即可解得.设(ρ2 , θ2)为点Q的极坐标,同理可解得.利用|PQ|=|ρ1﹣ρ2|即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过抛物线y=焦点F的直线交抛物线于A,B两点,点C在直线y=-1上,若△ABC为正三角形,则其边长为

A. 11 B. 13 C. 14 D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某房地产开发商为吸引更多消费者购房,决定在一块闲置的扇形空地中修建一个花园.如图,已知扇形AOB的圆心角∠AOB=,半径为R.现欲修建的花园为OMNH,其中M,H分别在OA,OB,N.设∠MON=θ,OMNH的面积为S.

(1)S表示为关于θ的函数;

(2)S的最大值及相应的θ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1= ,且an+1=an(an+1)(n∈N*),则m= + +…+ 的整数部分是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断函数的单调性;

(2)若,当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个圆锥的底面半径为1,高为3,在圆锥中有一个半径为x的内接圆柱.

(1)试用x表示圆柱的高;

(2)x为何值时,圆柱的侧面积最大,最大侧面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,四边形

为矩形,平面平面.

I)求证:平面

II)点在线段上运动,设平面与平面所成二面角的平面角为

试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数F(x)= 是定义在R上的函数,其中f(x)的导函数为f′(x),满足f′(x)<f(x)对于x∈R恒成立,则(
A.f(2)>e2f(0),f(2012)<e2012f(0)
B.f(2)<e2f(0),f(2012)<e2012f(0)
C.f(2)>e2f(0),f(2012)>e2012f(0)
D.f(2)<e2f(0),f(2012)>e2012f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足an=2an1+2n+1(n∈N* , n≥2),a3=27.
(1)求a1 , a2的值;
(2)是否存在一个实数t,使得bn= (an+t)(n∈N*),且数列{bn}为等差数列?若存在,求出实数t;若不存在,请说明理由;
(3)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案