精英家教网 > 高中数学 > 题目详情

【题目】据研究,甲磁盘受到病毒感染,感染的量y(单位: 比特数)与时间x(单位:秒)的函数关系是,乙磁盘受到病毒感染,感染的量y(单位: 比特数)与时间x(单位:秒)的函数关系是,显然当时,甲磁盘受到病毒感染增长率比乙磁盘受到病毒感染增长率大.试根据上述事实提炼一个不等式,并证明之.

【答案】

【解析】试题分析:因为甲磁盘受到感染的感染增长率是的导数,乙磁盘受到病毒感染增长率为的导数又因为当时,甲磁盘受到病毒感染增长率比乙磁盘受到病毒感染增长率大构造函数,利用导数证明即可.

试题解析因为甲磁盘受到感染的感染增长率是的导数,乙磁盘受到病毒感染增长率为的导数

又因为当时,甲磁盘受到病毒感染增长率比乙磁盘受到病毒感染增长率大

下面证明:

,,,所以上是增函数,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

1)若函数上为减函数,求实数的最小值;

2)若存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其图象与直线y=﹣1相邻两个交点的距离为π.若f(x)>1对任意x∈(﹣ )恒成立,则φ的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.( ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用秦九韶算法判断方程x5+x3+x2-1=0[0,2]上是否存在实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,若g(x)=f(x)-a恰好有3个零点,则a的取值范围为(  )

A. B. C. D.

【答案】D

【解析】

恰好有3个零点, 等价于的图象有三个不同的交点

作出的图象,根据数形结合可得结果.

恰好有3个零点,

等价于有三个根,

等价于的图象有三个不同的交点

作出的图象,如图,

由图可知,

时,的图象有三个交点,

即当时,恰好有3个零点,

所以的取值范围是故选D.

【点睛】

本题主要考查函数的零点与分段函数的性质,属于难题. 函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数轴的交点方程的根函数的交点.

型】单选题
束】
13

【题目】设集合A={0,log3(a+1)},B={a,a+b}若A∩B={1},则b=______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax(a>0且a≠1)的图象过的(-2,16).

(1)求函数f(x)的解析式;

(2)若f(2m+5)<f(3m+3),求m的取值范围.

【答案】(1)f(x)=; (2)m<2.

【解析】

(1)将代入可得从而可得函数的解析式;(2)根据(1)中所求解析式判断是实数集上的减函数,不等式等价于,解不等式即可得结果.

(1)∵函数f(x)=ax(a>0且a≠1)的图象过点(-2,16),

∴a-2=16

∴a=,即f(x)=

(2)∵f(x)=为减函数,f(2m+5)<f(3m+3),

∴2m+5>3m+3,

解得m<2.

【点睛】

本题主要考查了指数函数的解析式和指数函数单调性的应用,意在考查综合应用所学知识解答问题的能力,属于基础题.

型】解答
束】
19

【题目】2017年APEC会议于11月10日至11日在越南岘港举行,某研究机构为了了解各年龄层对APEC会议的关注程度,随机选取了100名年龄在[20,45]内的市民举行了调查,并将结果绘制成如图所示的频率分布直方图(分组区间分布为[20,25),[25.30),[30,35),[35,40),[40,45]).

(1)求选取的市民年龄在[30,35)内的人数;

(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人参与APEC会议的宣传活动,求参与宣传活动的市民中至少有一人的年龄在[35,40)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,,点在线段上.

(1)若中点,证明:平面

(2)当时,求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了了解学生对消防知识的了解情况,从高一年级和高二年级各选取100名同学进行消防知识竞赛.下图(1)和下图(2)分别是对高一年级和高二年级参加竞赛的学生成绩按 分组,得到的频率分布直方图.

(1)请计算高一年级和高二年级成绩小于60分的人数;

(2)完成下面列联表,并回答:有多大的把握可以认为“学生所在的年级与消防常识的了解存在相关性”?

附:临界值表及参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=cos(2x-).

(1)利用“五点法”,完成以下表格,并画出函数fx)在一个周期上的图象;

(2)求函数fx)的单调递减区间和对称中心的坐标;

(3)如何由y=cosx的图象变换得到fx)的图象.

2x-

0

π

x

fx

查看答案和解析>>

同步练习册答案