精英家教网 > 高中数学 > 题目详情

已知定点F(2,0),直线l:x=2,点P为坐标平面上的动点,过点P作直线l的垂线,垂足为点Q,且数学公式.设动点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点F的直线l1与曲线C有两个不同的交点A、B,求证:数学公式+数学公式=数学公式
(3)记数学公式数学公式的夹角为θ(O为坐标原点,A、B为(2)中的两点),求cosθ的取值范围.

(1)解:设点P的坐标为(x,y). (1分)
由题意,可得Q(-2,y),=(-4,y),=(2-x,-y),=(-2-x,0).(3分)
,得=0,即(-4,y)•(-2x,-y)=0
∴y2=8x(x≥0). (6分)
∴所求曲线C的方程为y2=8x(x≥0).
(2)证明:因为过点F的直线l1与曲线C有两个不同的交点A、B,所以l1的斜率不为零,
故设直线l1的方程为x=my+2. (7分)
于是A、B的坐标(x1,y1)、(x2,y2)为方程组的实数解.
消x并整理得y2-8my-16=0.      (8分)
于是y1+y2=8m,y1y2=-16,
∴x1+x2=8m2+4,x1x2=4,(10分)
又因为曲线y2=8x(x≥0)的准线为x=-2,
所以+=+==,得证. (12分)
(3)解:由(2)可知,=(x1,y1),=(x2,y2).
==(当且仅当m=0时,等号成立).     (16分)
∴cosθ的取值范围为[-,0). (18分)
分析:(1)确定向量的坐标,利用,得=0,由此可求曲线C的方程;
(2)设直线l1的方程为x=my+2与抛物线方程联立,利用韦达定理,结合+=+,即可证得结论;
(3)确定=(x1,y1),=(x2,y2),利用,可求cosθ的取值范围.
点评:本题考查向量知识的运用,考查轨迹方程,考查直线与抛物线的位置关系,考查韦达定理的运用,考查计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定点F(2,0)和定直线l:x=-2,动圆P过定点F与定直线l相切,记动圆圆心P的轨迹为曲线C.
(1)求曲线C的方程.
(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点F(2,0)和定直线l:x=
9
2
,若点P(x,y)到直线l的距离为d,且d=
3
2
|PF|
(1)求点P的轨迹方程;
(2)若F′(-2,0),求
PF
PF′
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点F(2,0),动圆P经过点F且与直线x=-2相切,记动圆的圆心P的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)过点F作倾斜角为60°的直线l与轨迹C交于A(x1,y1)、B(x1,y2)两点,O为坐标原点,点M为轨迹C上一点,若向量
OM
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)已知定点F(2,0),直线l:x=2,点P为坐标平面上的动点,过点P作直线l的垂线,垂足为点Q,且
FQ
⊥(
PF
+
PQ
)
.设动点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点F的直线l1与曲线C有两个不同的交点A、B,求证:
1
|AF|
+
1
|BF|
=
1
2

(3)记
OA
OB
的夹角为θ(O为坐标原点,A、B为(2)中的两点),求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)已知定点F(2,0),直线l:x=-2,点P为坐标平面上的动点,过点P作直线l的垂线,垂足为点Q,且
FQ
⊥(
PF
+
PQ
)

(1)求动点P所在曲线C的方程;
(2)直线l1过点F与曲线C交于A、B两个不同点,求证:
1
|AF|
+
1
|BF|
=
1
2

(3)记
OA
OB
的夹角为θ(O为坐标原点,A、B为(2)中的两点),求cosθ的最小值.

查看答案和解析>>

同步练习册答案