精英家教网 > 高中数学 > 题目详情

一个多面体的直观图和三视图如图所示, M是AB的中点.一只小蜜蜂在几何体ADF—BCE内自由飞翔, 则它飞入几何体F—AMCD内的概率为(     )

A.              B.               C.               D.

 

【答案】

C

【解析】

试题分析:根据题意,由于该几何体是三棱柱,其中底面为正方形,边长为a,高为a,那么可知三棱柱的体积为而几何体F—AMCD的体积为四棱锥的体积,体积为,利用几何概型的体积比可知概率为,故答案为C.

考点:几何体的体积

点评:主要是考查了几何体体积的计算,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点.
(Ⅰ)求证:GN⊥AC;
(Ⅱ)求二面角F-MC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图和三视图如图所示精英家教网
(1)求证:PA⊥BD;
(2)是否在线段PD上存在一Q点,使二面角Q-AC-D的平面角为30°,设λ=
DQDP
,若存在,求λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图和三视图如图所示:

(I)求证:PA⊥BD;
(II)连接AC、BD交于点O,在线段PD上是否存在一点Q,使直线OQ与平面ABCD所成的角为30°?若存在,求
|DQ||DP|
的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图和三视图如图所示,其中M、G分别是AB、DF的中点.
(1)在AD上(含A、D端点)确定一点P,使得GP∥平面FMC;
(2)一只苍蝇在几何体ADF-BCE内自由飞翔,求它飞入几何体F-AMCD内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图和三视图如图所示,其中M、G分别是AB、DF的中点.精英家教网
(1)求证:CM⊥平面FDM;
(2)在线段AD上(含A、D端点)确定一点P,使得GP∥平面FMC,并给出证明.

查看答案和解析>>

同步练习册答案