精英家教网 > 高中数学 > 题目详情
已知数列{
2
n(n+1)
},则其前n项和等于
 
考点:数列的求和
专题:计算题,等差数列与等比数列
分析:利用裂项法,可求数列{
2
n(n+1)
}的前n项和.
解答: 解:∵
2
n(n+1)
=2(
1
n
-
1
n+1
),
∴其前n项和=2(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)=2(1-
1
n+1
)=
2n
n+1

故答案为:
2n
n+1
点评:本题考查数列{
2
n(n+1)
}的前n项和,考查裂项法的运用,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(
1
5
x-log5x,若实数x0是方程f(x)=0的解,且0<x1<x0,则f(x1)的值(  )
A、恒为正B、等于零
C、恒为负D、不大于零

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x,且f(a+2)=18,g(x)=3ax-4x的定义域为区间[-2,2].
(1)求函数g(x)的解析式;
(2)试讨论方程g(x)+m=0解的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F为抛物线C:y=-
1
4
x2
的焦点,与抛物线相切于点P(-4,-4)的直线l与x轴的交点为Q,
(1)求∠PQF;
(2)设过F且距Q距离最大的直线交C于MN,求弦MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高中二年级有253名学生,为了了解他们的视力情况,准备按1:5的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

知二次函数f(x)=ax2-(a+2)x+1(a∈z),在区间(-2,-1)上恰有一个零点,解不等式f(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=-x2+ax在区间[0,1]上是增函数,在区间[3,4]上是减函数,则实数a的取值范围是(  )
A、(0,3)
B、(1,3)
C、[1,3]
D、(0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+2x+c的最小值为-1,且对任意x都有f(-1+x)=f(-1-x).
(1)求函数f(x)的解析式;
(2)设g(x)=f(-x)-λf(x)+1,若g(x)在[-1,1]上是减函数,求实数λ的取值范围;
(3)设函数h(x)=log2[p-f(x)],若此函数是定义域为非空数集,且不存在零点,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知lg2=a,lg7=b,那么log898=
 

查看答案和解析>>

同步练习册答案