精英家教网 > 高中数学 > 题目详情
(2013•石家庄二模)如图,在四棱锥A-BCDE中,底面BCDE为直角梯形,且BE∥CD,CD⊥BC.侧面ABC⊥底面BCDE,F为AC的中点,BC=BE=4CD=2,AB=AC.
(Ⅰ)求证:FD⊥CE;
(Ⅱ)若规定正视方向与平面ABC 垂直,且四棱锥A-BCDE的侧(左)视图的面积为
3
,求点B到平面ACE的距离.
分析:(Ⅰ)过F作FH⊥BC于H,连接DH,将直角梯形BCDE补成正方形BCGE,连接BG,证明EC⊥平面FHD,即可证得结论;
(Ⅱ)利用VA-BCE=VB-ACE,即可求点B到平面ACE的距离.
解答:(Ⅰ)证明:过F作FH⊥BC于H,连接DH,将直角梯形BCDE补成正方形BCGE,…(2分)
连接BG
∵侧面ABC⊥底面BCDE,平面ABC∩底面BCDE=BC
∴FH⊥底面BCDE
∴FH⊥BC
∵F为AC的中点,
∴H为BC的四等分点,…(4分)
CD=
1
4
CG
,∴DH∥BG
∴DH⊥EC
∵FH∩DH=H
∴EC⊥平面FHD
∴FD⊥CE…(6分)
(Ⅱ)解:由题意可知△ABC的高为h=
3
…(8分)
∴AB=AC=2
∴VA-BCE=
1
3
S△BCE•h
=
1
3
1
2
•BE•BC•h
=
2
3
3

在△AEC中,AE=EC=2
2
,AC=2,S△AEC=
7

∵VB-ACE=
1
3
S△AEC•h′

∴h′=
2
21
7

∴点B到平面ACE的距离为
2
21
7
…(12分)
点评:本题考查线面垂直,考查线线垂直,考查点到面距离的计算,正确运用等体积法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•石家庄二模)在△ABC中,若∠A=60°,∠B=45°,BC=3
2
,则AC=
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石家庄二模)tan(-150°)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石家庄二模)已知i是虚数单位,则复数
1+3i
1-i
的模为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石家庄二模)下列函数中,在定义域上既是减函数又是奇函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石家庄二模)已知一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn)其样本点的中心为(2,3),若其回归直线的斜率的估计值为-1.2,则该回归直线的方程为(  )

查看答案和解析>>

同步练习册答案