精英家教网 > 高中数学 > 题目详情

关于x的方程3sinx+4cosx=2m-1有解,则实数m的取值范围是________.

[-2,3]
分析:根据三角函数的有界性先求出3sinx+4cosx的取值范围,进而得到m满足的式子,从而求出m的取值范围.
解答:∵3sinx+4cosx=5sin(x+θ),又∵-1≤sin(x+θ)≤1,∴-5≤sin(x+θ)≤5.
又已知关于x的方程3sinx+4cosx=2m-1有解,∴m必须满足-5≤2m-1≤5,解得-2≤m≤3.
∴实数m的取值范围是[-2,3].
故答案为[-2,3].
点评:正确求出3sinx+4cosx的取值范围和理解方程3sinx+4cosx=2m-1有解是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选做题(考生只能从A、B、C题中选作一题)
A、已知直线x+2y-4=0与
x=2-3cosθ
y=1+3sinθ
(θ为参数)相交于A、B两点,则|AB|=
 

B、若关于x的方程x2+4x+|a-1|+|a+1|=0有实根,则实数a的取值范围为
 

C、如图,⊙O的直径AB=6cm,P是延长线上的一点,过点P作⊙O的切线,切点为C,连接AC,若∠CAP=30°,
则PC=
 
cm.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-4:坐标系与参数方程】
(1)求点M(2,
π
3
)到直线ρ=
3
sinθ+cosθ
上点A的距离的最小值.
(2)求曲线C:
x=-1+cosθ
y=sinθ
(θ为参数)
关于直线y=1对称的曲线的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程
(1)参数方程与极坐标:求点M(2,
π
3
)到直线ρ=
3
sinθ+cosθ
上点A的距离的最小值.
(2)曲线C:
x=-1+cosθ
y=sinθ
(θ为参数)
关于直线y=1对称的曲线的参数方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博二模)已知函数f(x)=
3
sinωx•cosωx+cos2ωx-
1
2
(ω>0)
,其最小正周期为
π
2

(I)求f(x)的表达式;
(II)将函数f(x)的图象向右平移
π
8
个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间[0,
π
2
]
上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

同步练习册答案