分析 (1)利用二倍角、辅助角公式,化简函数,即可求f(x)的最小正周期;
(2)当$x∈[{0,\frac{π}{2}}]$时,2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],利用f(x)的最小值为2,求a的值.
解答 解:(1)函数$f(x)=2{cos^2}x+2\sqrt{3}sinxcosx+a=cos2x+1+\sqrt{3}sin2x+a$
=$2sin(2x+\frac{π}{6})+a+1$,…(4分)
∴f(x)的最小正周期为π;
(2)当$x∈[{0,\frac{π}{2}}]$时,2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
∴f(x)的最小值为-1+a+1=2,∴a=2.
点评 本题考查二倍角、辅助角公式,化简函数,考查函数的性质,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{16}{5}$ | B. | -3 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{6}}}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 25π | B. | 50π | C. | 125π | D. | 75π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com