精英家教网 > 高中数学 > 题目详情

【题目】若对任意的x∈D,均有g(x)≤f(x)≤h(x)成立,则称函数f(x)为函数g(x)到函数h(x)在区间D上的“任性函数”.已知函数f(x)=kx,g(x)=x2﹣2x,h(x)=(x+1)(lnx+1),且f(x)是g(x)到h(x)在区间[1,e]上的“任性函数”,则实数k的取值范围是

【答案】[e﹣2,2]
【解析】解:若f(x)是g(x)到h(x)在区间[1,e]上的“任性函数”,

则x∈[1,e]时, 恒成立,

恒成立,

恒成立,

若k≥x﹣2在区间[1,e]上恒成立,则k≥e﹣2;

,若 在区间[1,e]上恒成立,则k≤v(x)min

令u(x)=x﹣lnx,则u′(x)=1﹣

当x∈[1,e]时,u′(x)≥0恒成立,

则u(x)=x﹣lnx在[1,e]上为增函数,u(x)≥u(1)=1恒成立,

≥0恒成立,

在[1,e]上为增函数,

v(x)≥v(1)=2恒成立,

故k≤2,

综上可得:k∈[e﹣2,2],

所以答案是:[e﹣2,2]

【考点精析】关于本题考查的函数的最大(小)值与导数,需要了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的图象与函数h(x)=x+ +2的图象关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)若g(x)=f(x)x+ax,且g(x)在区间[0,2]上为减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形ABCD中,AB=4 ,AD=2 ,将△ABD沿BD折起,使得点A折起至A′,设二面角A′﹣BD﹣C的大小为θ.

(1)当θ=90°时,求A′C的长;
(2)当cosθ= 时,求BC与平面A′BD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|xex|,又g(x)=f2(x)﹣tf(x)(t∈R),若满足g(x)=﹣1的x有四个,则t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合M={x|x2+x﹣2>0}, ,则(UM)∩N=(  )
A.[﹣2,0]
B.[﹣2,1]
C.[0,1]
D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 经过点 ,左右焦点分别为F1、F2 , 圆x2+y2=2与直线x+y+b=0相交所得弦长为2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设Q是椭圆C上不在x轴上的一个动点,O为坐标原点,过点F2作OQ的平行线交椭圆C于M、N两个不同的点
⑴试探究 的值是否为一个常数?若是,求出这个常数;若不是,请说明理由.
⑵记△QF2M的面积为S1 , △OF2N的面积为S2 , 令S=S1+S2 , 求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2x+2 sinxcosx+a,且当x∈[0, ]时,f(x)的最小值为2.
(Ⅰ)求a 的值;
(Ⅱ)先将函数y=f (x) 的图象上点的纵坐标不变,横坐标缩小为原来的 ,再将所得的图象向右平移 个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0, ]上所有根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当实数x,y满足 时,1≤ax+y≤4恒成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,则其导函数f′(x)的图象大致是(  )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案