精英家教网 > 高中数学 > 题目详情

【题目】已知数列是等差数列,;数列的前项和是,且=1.

(1)求数列的通项公式;

(2)求证:数列是等比数列.

【答案】(1) (2)略

【解析】

1)设{an}的公差为d,运用等差数列的通项公式,解方程可得首项和公差,即可得到所求通项;(2)运用数列的递推式,结合等比数列的定义,即可得证.

1)设{an}的公差为d

a26a518

a1+d6a1+4d18

a12d4

an2+4n1)=4n2

2)证明:当n1时,b1T1,由T1+b11,得b1

n2时,Tn1Tn11bn1

TnTn1bn1bn),即bnbn1bn),

bnbn1

∴数列{bn}是以为首项,为公比的等比数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆经过点 且圆心在直线.

(1)求圆的方程;

(2)过点的直线与圆交于两点,问在直线上是否存在定点使得恒成立?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中政教处为了调查学生对一带一路的关注情况,在全校组织了一带一路知多少的知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制)的茎叶图如下:.

(1)写出该样本的中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数;

(2)从所抽取的70分以上的学生中再随机选取4人,记表示测试成绩在80分以上的人数,的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数Z1 , Z2在复平面内对应的点分别为A(﹣2,1),B(a,3).
(1)若|Z1﹣Z2|= ,求a的值.
(2)复数z=Z1Z2对应的点在二、四象限的角平分线上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn是数列{an}的前n项和,已知a1=3,an+1=2Sn+3(n∈N) (I)求数列{an}的通项公式;
(Ⅱ)令bn=(2n﹣1)an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设为抛物线上不同的四点,且点关于轴对称,平行于该抛物线在点处的切线.

(1)求证:直线与直线的倾斜角互补;

(2)若,且的面积为16,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是函数的导函数,则的图象大致是( )

A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]

C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数的图象, 只需将函数的图象(

A. 所有点的横坐标伸长到原来的2(纵坐标不变), 再将所得的图像向左平移个单位.

B. 所有点的横坐标伸长到原来的2(纵坐标不变), 再将所得的图像向左平移个单位.

C. 所有点的横坐标缩短到原来的(纵坐标不变), 再将所得的图像向左平移个单位.

D. 所有点的横坐标缩短到原来的(纵坐标不变), 再将所得的图像向左平移个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个命题:

函数的一条对称轴是

函数的图象关于点(,0)对称;

正弦函数在第一象限为增函数

,则,其中

以上四个命题中正确的有    (填写正确命题前面的序号)

查看答案和解析>>

同步练习册答案