精英家教网 > 高中数学 > 题目详情
若sinα+cosα=-
2
,cos2α=
 
考点:二倍角的余弦
专题:三角函数的求值
分析:sinα+cosα=-
2
,化简得
2
sin(α+
π
4
)=-
2
,得到sin(α+
π
4
)=-1,所以α+
π
4
=2kπ-
π
2
,k∈Z,得到α=2kπ-
4
,代入cos2α求值.
解答: 解:∵sinα+cosα=-
2

2
sin(α+
π
4
)=-
2

∴sin(α+
π
4
)=-1,
∴α+
π
4
=2kπ-
π
2
,k∈Z,∴α=2kπ-
4

cos2α=cos(2kπ-
4
)=cos
4
=-
2
2

故答案为:-
2
2
点评:此题考查了两角和与差的三角函数的灵活运用,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(
x+1
x
)=
x2+x+1
x2
,则f(x)的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x2+bx+c(b,c∈R),若对一切x∈R,有f(x+
1
x
)>0,且f(
2x2+3
x2+1
)的最大值为1,求b,c所满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(0,+∞)上的函数f(x)是增函数,如果f(x2-2ax)在x∈[2,4]上是增函数,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)(1+tan2α)cos2α;
(2)
1+cosα
1-cosα
+
1-cosα
1+cosα
(180°<α<270°)

查看答案和解析>>

科目:高中数学 来源: 题型:

如果一个函数f(x)的图象既关于y轴对称,又关于原点对称,那么称这个函数f(x)为“友好函数”.在下列几个函数中,
①函数f(x)=0;
②函数f(x)=x0
③函数f(x)的定义域为R,且对任意x,y∈R,都有f(x+y)=f(x)•f(y)成立;
④函数f(x)的定义域为R,且对任意x,y∈R,都有f(x•y)=f(x)+f(y)成立;
⑤函数f(x)的定义域为R,且对任意x∈R,都有f(-|x|)=-f(x)成立;
其中属于“友好函数”的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=3n-n,求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,若∠α和∠β的终边互相垂直,则∠α和∠β的关系式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,程序框图(算法流程图)的输出结果是
 

查看答案和解析>>

同步练习册答案