精英家教网 > 高中数学 > 题目详情
14.在等差数列{an}中,已知a1=$\frac{1}{3}$,a3=$\frac{5}{3}$,an=33,则n=(  )
A.48B.49C.50D.51

分析 由已知求出等差数列的公差,然后代入通项公式求n.

解答 解:在等差数列{an}中,由a1=$\frac{1}{3}$,a3=$\frac{5}{3}$,得
d=$\frac{{a}_{3}-{a}_{1}}{3-1}=\frac{\frac{5}{3}-\frac{1}{3}}{2}=\frac{2}{3}$,
∴an=$\frac{1}{3}+\frac{2}{3}(n-1)$=33,解得:n=50.
故选:C.

点评 本题考查等差数列的通项公式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知不等式ax2+bx+c>0的解集为{x|-$\frac{1}{2}$<x<$\frac{1}{3}$},求不等式cx2+bx+a<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在某次水下考古活动中,需要潜水员潜入水深为30米的水底进行作业.其用氧量包含3个方面:①下潜时,平均速度为v(米/单位时间),单位时间内用氧量为cv2(c为正常数);②在水底作业需5个单位时间,每个单位时间用氧量为0.4;③返回水面时,平均速度为$\frac{v}{2}$(米/单位时间),单位时间用氧量为0.2.记该潜水员在此次考古活动中,总用氧量为y.
(1)将y表示为v的函数;
(2)设0<v≤5,试确定下潜速度v,使总的用氧量最小,并求y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列变量是线性相关的是(  )
A.人的身高与视力B.角的大小与弧长
C.收入水平与消费水平D.人的年龄与身高

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,acosC+$\sqrt{3}$asinC-b-c=0,a=2,S△ABC=$\sqrt{3}$,则b+c=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份2007200820092010201120122013
年份代号t1234567
人均纯收入y2.93.33.64.44.85.25.9
(1)求$\overline{t}$,$\overline{y}$并完成表格;
(2)求y关于t的线性回归方程;
(3)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
$\hat b=\frac{{\sum_{i=1}^n{({t_i}-{{\overline{t}}_{\;}})({y_i}-\overline{y})}}}{{\sum_{i=1}^n{{{({t_i}-{{\overline{t}}})}^2}}}}$.$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow{a}$=(2cosx,-1),$\overrightarrow{b}$=(2sin(x+$\frac{π}{6}$),1),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,
(1)求f(x)的解析式以及最小正周期;
(2)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如果某商品原来的价格为100元,卖出的数量为1000件.若现在的价格上涨x%,则卖出的数量将减少0.5x%,那么当x为何值时,销售量最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若cos(α+$\frac{π}{6}$)=$\frac{\sqrt{6}}{3}$,且α∈(0,$\frac{π}{2}$),则cosα=$\frac{3\sqrt{2}+\sqrt{3}}{6}$,cos(2$α-\frac{π}{6}$)=-$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案