【题目】设函数,,,记.
(1)求曲线在处的切线方程;
(2)求函数的单调区间;
(3)当时,若函数没有零点,求的取值范围.
【答案】(1)曲线在处的切线方程;(2)当时,函数的增区间是,当时,函数的增区间是,减区间是;(3)实数的取值范围为.
【解析】
试题分析:(1)求曲线在处的切线方程,由导数的几何意义得,对函数求导得,既得函数在处的切线的斜率为,又,得切点,由点斜式可得切线方程;(2)求函数的单调区间,由题意得,,求函数的单调区间,先确定函数的定义域为,由于含有对数函数,可对函数求导得,,由于含有参数,需对讨论,分,两种情况,从而得函数的单调区间;(3)当时,若函数没有零点,即无解,由(2)可知,当时,函数的最大值为,只要小于零即可,由此可得的取值范围.
试题解析:(1),则函数在处的切线的斜率为.又,
所以函数在处的切线方程为,即 4分
(2), ,().
①当时,,在区间上单调递增;
②当时,令,解得;令,解得.
综上所述,当时,函数的增区间是;
当时,函数的增区间是,减区间是. 9分
(3)依题意,函数没有零点,即无解.
由(2)知,当时,函数在区间上为增函数,区间上为减函数,
由于,只需,
解得.
所以实数的取值范围为. 13分
科目:高中数学 来源: 题型:
【题目】2018年国际象棋奥林匹克团体赛中国男队、女队同时夺冠.国际象棋中骑士的移动规则是沿着3×2格或2×3格的对角移动.在历史上,欧拉、泰勒、哈密尔顿等数学家研究了“骑士巡游”问题:在格的黑白相间的国际象棋棋盘上移动骑士,是否可以让骑士从某方格内出发不重复地走遍棋盘上的每一格?
图(一)给出了骑士的一种走法,它从图上标1的方格内出发,依次经过标2,3,4,5,6,,到达标64的方格内,不重复地走遍棋盘上的每一格,又可从标64的方格内直接走回到标1的方格内.如果骑士的出发点在左下角标50的方格内,按照上述走法,_____(填“能”或“不能”)走回到标50的方格内.
若骑士限制在图(二)中的3×4=12格内按规则移动,存在唯一一种给方格标数字的方式,使得骑士从左上角标1的方格内出发,依次不重复经过2,3,4,5,6,,到达右下角标12的方格内,分析图(二)中A处所标的数应为____.
35 | 38 | 27 | 16 | 29 | 42 | 55 | 18 |
26 | 15 | 36 | 39 | 54 | 17 | 30 | 43 |
37 | 34 | 13 | 28 | 41 | 32 | 19 | 56 |
14 | 25 | 40 | 33 | 20 | 53 | 44 | 31 |
63 | 12 | 21 | 52 | 1 | 8 | 57 | 46 |
24 | 51 | 64 | 9 | 60 | 45 | 2 | 5 |
11 | 62 | 49 | 22 | 7 | 4 | 47 | 58 |
50 | 23 | 10 | 61 | 48 | 59 | 6 | 3 |
图(一)
1 | |||
A | |||
3 | 12 |
图(二)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的最小正周期为,将函数的图像向右平移个单位长度,再向下平移个单位长度,得到函数的图像.
(1)求函数的单调递增区间;
(2)在锐角中,角的对边分别为,若,,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知sin(-π+θ)+2cos(3π-θ)=0,则;
(2)已知.
①化简f(α);
②若f(α),且,求cos α-sin α的值;
③若,求f(α)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过椭圆W:的左焦点作直线交椭圆于两点,其中 ,另一条过的直线交椭圆于两点(不与重合),且点不与点重合.过作轴的垂线分别交直线,于,.
(Ⅰ)求点坐标和直线的方程;
(Ⅱ)求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,,数列满足条件:对于,,且,并有关系式:,又设数列满足(且,).
(1)求证数列为等比数列,并求数列的通项公式;
(2)试问数列是否为等差数列,如果是,请写出公差,如果不是,说明理由;
(3)若,记,,设数列的前项和为,数列的前项和为,若对任意的,不等式恒成立,试求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列命题:
①回归直线恒过样本点的中心,且至少过一个样本点;
②两个变量相关性越强,则相关系数r就越接近于1;
③将一组数据的每个数据都加一个相同的常数后,方差不变;
④在回归直线方程 中,当解释变量x增加一个单位时,预报变量平均减少0.5;
⑤在线性回归模型中,相关指数表示解释变量对于预报变量的贡献率,越接近于1,表示回归效果越好;
⑥对分类变量与,它们的随机变量的观测值来说, 越小,“与有关系”的把握程度越大.
⑦两个模型中残差平方和越小的模型拟合的效果越好.
则正确命题的个数是( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,已知直角梯形ABCD中,,,过A作,垂足为E.现将沿AE折叠,使得,如图②.
(1)求证:;
(2)若FG分别为AE,DB的中点.
(i)求证:平面DCE;
(ii)求证:平面平面DBC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com