精英家教网 > 高中数学 > 题目详情

【题目】理科竞赛小组有9名女生、12名男生,从中随机抽取一个容量为7的样本进行分析.
(Ⅰ)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可)
(Ⅱ)如果随机抽取的7名同学的物理、化学成绩(单位:分)对应如表:

学生序号

1

2

3

4

5

6

7

物理成绩

65

70

75

81

85

87

93

化学成绩

72

68

80

85

90

86

91

规定85分以上(包括85份)为优秀,从这7名同学中再抽取3名同学,记这3名同学中物理和化学成绩均为优秀的人数为X,求随机变量X的分布列和数学期望.

【答案】解:(Ⅰ)如果按照性别比例分层抽样,则从9名女生、12名男生, 从中随机抽取一个容量为7的样本,抽取的女生为3人,男生为4人.可以得到 个不同的样本.
(II)这7名同学中物理和化学成绩均为优秀的人数为3人,
抽取的3名同学中物理和化学成绩均为优秀的人数X可能取值为0,1,2,3,
则P(X=k)= ,可得P(X=0)= ,P(X=1)= ,P(X=2)= ,P(X=3)=
其X分布列为:

X

0

1

2

3

P

数学期望E(X)=0+1× +2× +3× =
【解析】(Ⅰ)如果按照性别比例分层抽样,则从9名女生、12名男生,从中随机抽取一个容量为7的样本,抽取的女生为3人,男生为4人.利用组合数的意义即可得出.(II)这7名同学中物理和化学成绩均为优秀的人数为3人,抽取的3名同学中物理和化学成绩均为优秀的人数X可能取值为0,1,2,3,可得P(X=k)= ,即可得出分布列与数学期望计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,点F1、F2是椭圆C1的左右焦点,椭圆C1与双曲线C2的渐近线交于点P,PF1⊥PF2 , 椭圆C1与双曲线C2的离心率分别为e1、e2 , 则(
A.e22=
B.e22=
C.e22=
D.e22=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若有三个不同的实数a,b,c,使得f(a)=f(b)=f(c),则a+b+c的取值范围为(
A.(2π,2017π)
B.(2π,2018π)
C.(
D.(π,2017π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形ABCD为正方形,PA⊥平面ABCD,PA∥BE,AB=PA=4,BE=2.
(Ⅰ)求证:CE∥平面PAD;
(Ⅱ)求PD与平面PCE所成角的正弦值;
(Ⅲ)在棱AB上是否存在一点F,使得平面DEF⊥平面PCE?如果存在,求 的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: (a>b>0)的离心率 ,且点 在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线l与椭圆E交于A、B两点,且线段AB的垂直平分线经过点 .求△AOB(O为坐标原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12)

已知关于的不等式,其中.

1)当变化时,试求不等式的解集

2)对于不等式的解集,若满足(其中为整数集). 试探究集合能否为有限集?若 能,求出使得集合中元素个数最少的的所有取值,并用列举法表示集合;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义[x]表示不超过x的最大整数,例如[2.11]=2,[﹣1.39]=﹣2,执行如下图所示的程序框图,则输出m的值为 (

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等差数列,数列{bn}是等比数列,Sn是数列{an}的前n项和,a1b1=1,S2.

(1)若b2a1a3的等差中项,求数列{an}与{bn}的通项公式;

(2)若an∈N,数列{}是公比为9的等比数列,求证:+…+.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)的焦点为FA(x1y1),B(x2y2)是过F的直线与抛物线的两个交点求证:

(1)y1y2=-p2;(2)为定值;

(3)以AB为直径的圆与抛物线的准线相切.

查看答案和解析>>

同步练习册答案