精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\sqrt{3}$sin2x-cos2x,有下列四个结论:①f(x)的最小正周期为π;②f(x)在区间[-$\frac{π}{3}$,$\frac{π}{6}$]上是增函数;③f(x)的图象关于点($\frac{π}{12}$,0)对称;④x=$\frac{π}{3}$是f(x)的一条对称轴.其中正确结论的个数为(  )
A.1B.2C.3D.4

分析 函数f(x)=$\sqrt{3}$sin2x-cos2x=2sin(2x-$\frac{π}{6}$),分析函数的周期性,单调性,对称性,可得答案.

解答 解:函数f(x)=$\sqrt{3}$sin2x-cos2x=2sin(2x-$\frac{π}{6}$),
①f(x)的最小正周期为π,故①正确;
②由2x-$\frac{π}{6}$∈[-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ](k∈Z)得:x∈[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z),
故f(x)在区间[-$\frac{π}{3}$,$\frac{π}{6}$]上不是单调函数,故②错误;
③由2x-$\frac{π}{6}$=2kπ得:x=$\frac{π}{12}$+kπ,(k∈Z),
当k=0时,f(x)的图象关于点($\frac{π}{12}$,0)对称,故③正确;
④由2x-$\frac{π}{6}$=$\frac{π}{2}$+2kπ得:x=$\frac{π}{3}$+kπ,(k∈Z),
当k=0时,f(x)的图象关于x=$\frac{π}{3}$对称,
故④正确;
故选:C

点评 本题以命题的真假判断与应用为载体,考查了三角函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.抛物线y=4x2的焦点到准线的距离是(  )
A.1B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数$f(x)=2sin(2x+\frac{π}{6})$的部分图象如图所示.
(1)写出f(x)的最小正周期及图中x0、y0的值;
(2)求f(x)在区间$[-\frac{π}{4},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=x2-ax+lnx,a∈R.
(1)当a=3时,求函数f(x)的极小值;
(2)令g(x)=x2-f(x),是否存在实数a,当x∈[1,e](e是自然对数的底数)时,函数g(x)取得最小值为1.若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在正方体ABCD-A1B1C1D1 中,
(1)画出二面角A-B1C-C1 的平面角
(2)求证:面BB1DD1⊥面A1B1C1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=cos2x+asinx-$\frac{a}{4}$-$\frac{1}{2}$.
(1)用a表示f(x)在[0,$\frac{π}{2}$]上的最小值M(a);
(2)当M(a)=$\frac{1}{4}$时,求a的值,并对此a值求f(x)的最大值;
(3)问a取何值时,方程f(x)=(1+a)sinx在[0,π)上有两解?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在数列{an}中,a1=1,an+1=$\frac{n+1}{2n}{a_n}$,n∈N*
(1)求证:数列{an}为等比数列.
(2)求{an}数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.圆C1:(x-1)2+(y-3)2=9和C2:x2+(y-2)2=1,M,N分别是圆C1,C2上的点,P是直线y=-1上的点,则|PM|+|PN|的最小值是(  )
A.5$\sqrt{2}$-4B.$\sqrt{17}$-1C.6-2$\sqrt{2}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在正三角形△ABC内任取一点P,则点P到A,B,C的距离都大于该三角形边长一半的概率为(  )
A.1-$\frac{\sqrt{3}π}{6}$B.1-$\frac{\sqrt{3}π}{12}$C.1-$\frac{\sqrt{3}π}{9}$D.1-$\frac{\sqrt{3}π}{18}$

查看答案和解析>>

同步练习册答案