精英家教网 > 高中数学 > 题目详情

【题目】已知函数,函数

⑴若的定义域为,求实数的取值范围;

⑵当,求函数的最小值

⑶是否存在实数,使得函数的定义域为,值域为?若存在,求出的值;若不存在,则说明理由.

【答案】(1);(2;(3

【解析】

1)因为的定义域为,所以对任意实数恒成立.m=0时显然不满足,当m不为0时,内层函数为二次函数,需要开口向上且判别式小于0,即可满足要求.

2x[-11]时,求函数是一个复合函数,复合函数的最值一般分两步来求,第一步求内层函数的值域,第二步研究外层函数在内层函数值域上的最值,本题内层函数的值域是确定的一个集合,而外层函数是一个系数有变量的二次函数,故本题是一个区间定轴动的问题.

(3) 根据函数的单调性,列出方程组 转化为:即mn是方程的两非负实根,且mn.即可得解.

(1)由题意对任意实数恒成立,

时显然不满足

(2)令,则

(3)∵

∴ 函数在[,]单调递增,

又∵

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,分别从两厂随机各选取了个轮胎,将每个轮胎的宽度(单位: )记录下来并绘制出如下的折线图:

(1)分别计算甲、乙两厂提供的个轮胎宽度的平均值;

(2)轮胎的宽度在内,则称这个轮胎是标准轮胎.

(i)若从甲乙提供的个轮胎中随机选取个,求所选的轮胎是标准轮胎的概率

(ii)试比较甲、乙两厂分别提供的个轮胎中所有标准轮胎宽度的方差大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个厂的轮胎相对更好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学现有6名包含在内的男志愿者和4名包含在内的女志愿者,这10名志愿者要参加第十三届全运会支援服务工作,从这些人中随机抽取5人参加田赛服务工作,另外5人参加径赛服务工作.

1)求参加田赛服务工作的志愿者中包含但不包含的概率;

(2)设表示参加径赛服务工作的女志愿者人数,求随机变量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,已知是边长为2的正方形, 为正三角形, 分别为的中点, .

(1)求证: 平面

(2)求证: 平面

3)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(2,0)B(20),曲线C上的动点P满足.

(1)求曲线C的方程;

(2)若过定点M(0,-2)的直线l与曲线C有公共点,求直线l的斜率k的取值范围;

(3)若动点Q(xy)在曲线C上,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD-A1B1C1D1的棱长为2,E为棱CC1的中点,点M在正方形BCC1B1内运动,且直线AM//平面A1DE,则动点M 的轨迹长度为( )

A. B. π C. 2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的极值;

(2)若 是方程)的两个不同的实数根,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四组函数中,表示同一函数的是

A.fx)=gx)=x2–1B.fx)=gx)=x+1

C.fx)=gx)=(2D.fx)=|x|,gt)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线分别是函数 图象上点处的切线,垂直相交于点,且分别与轴相交于点AB,则△PAB的面积的取值范围是( )

A. (1,+) B. (0,2) C. (0,+) D. (0,1)

查看答案和解析>>

同步练习册答案