精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的函数y=fx),满足f2=0,函数y=fx+1)的图象关于点(-10)中心对称,且对任意的负数x1x2x1x2),恒成立,则不等式fx)<0的解集为____

【答案】(-∞,-2)∪(02

【解析】

根据条件判断函数fx)是奇函数,结合不等式的性质,构造函数hx=x2107fx),研究函数hx)的奇偶性和取值情况,进行求解即可.

∵函数y=fx+1)的图象关于点(-10)中心对称,

∴函数y=fx)的图象关于点(00)中心对称,即函数fx)是奇函数,

对对任意的负数x1x2x1≠x2),恒成立,

不妨设x1x2,则x12107fx1-x22107fx2)>0

hx=x2107fx),则不等式等价为hx1)>hx2),且函数hx)是偶函数,

hx)在(-∞,0)上为减函数,∵f2=0,∴h2=22107f2=0

则当x0时,不等式fx)<0等价为不等式x2107fx)<0,即hx)<0

x0时,不等式fx)<0等价为不等式x2107fx)>0,即hx)>0

x0时,由hx)<00x2

x0时,由hx)>0x-2

fx)<0的解集为(-∞,-2)∪(02),

故答案为:(-∞,-2)∪(02).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知0<a<b,且a+b=1,则下列不等式中正确的是(
A.log2a>0
B.2ab
C.log2a+log2b<﹣2
D.2 +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学在“三关心”(即关心家庭、关心学校、关心社会)的专题中,对个税起征点问题进行了学习调查.学校决定从高一年级800人,高二年级1000人,高三年级800人中按分层抽样的方法共抽取13人进行谈话,其中认为个税起征点为3000元的有3人,认为个税起征点为4000元的有6人,认为个税起征点为 5000元的有4人.

(1)求高一年级、高二年级、高三年级分别抽取多少人?

(2)从13人中选出3人,求至少有1人认为个税起征点为4000元的概率;

(3)记从13人中选出3人中认为个税起征点为4000元的人数为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象如图所示:

给出下列四个命题:

(1)方程有且仅有6个根;

(2)方程有且仅有3个根;

(3)方程有且仅有5个根;

(4)方程有且仅有4个根.

其中正确命题的个数是( )

A. 4个B. 3个C. 2个D. 1个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)求的极值;

(2) 函数有两个极值点,若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为准备参加市运动会,对本校高一、高二两个田径队中30名跳高运动员进行了测试,并用茎叶图表示出本次测试30人的跳高成绩(单位:cm).跳高成绩在175cm以上(包括175cm)定义为“合格”,成绩在175cm以下定义为“不合格”.

(1)如果从所有运动员中用分层抽样抽取“合格”与“不合格”的人数共10人,问就抽取“合格”人数是多少?
(2)若从所有“合格”运动员中选取2名,用X表示所选运动员来自高一队的人数,试写出X的分布图,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an},{bn}中,a1=2,b1=4且an , bn , an+1成等差数列,bn , an+1 , bn+1成等比数列(n∈N*
(1)求a2 , a3 , a4及b2 , b3 , b4;由此归纳出{an},{bn}的通项公式,并证明你的结论.
(2)若cn=log2),Sn=c1+c2+…+cn , 试问是否存在正整数m,使Sm≥5,若存在,求最小的正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,C是半圆O上除A、B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB=
证明:平面ADE⊥平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥P﹣ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.

(1)求证:AP∥平面MBD;

(2)若AD⊥PB,求证:BD⊥平面PAD.

查看答案和解析>>

同步练习册答案