精英家教网 > 高中数学 > 题目详情

抛物线上一点A的横坐标为4,则点A与抛物线焦点的距离为(    )

A、2        B、3      C、4      D、5

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点A的横坐标为x1(x1>0),过点A作抛物线C的切线l1交x轴于点D,交y轴于点Q,交直线l:y=
p2
于点M,当|FD|=2时,∠AFD=60°.
(Ⅰ)求证:△AFQ为等腰三角形,并求抛物线C的方程;
(Ⅱ)若B位于y轴左侧的抛物线C上,过点B作抛物线C的切线l2交直线l1于点P,交直线l于点N,求△PMN面积的最小值,并求取到最小值时的x1值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点A的横坐标为x1(x1>0),过点A作抛物线C的切线l1交x轴于点D,交y轴于点Q,交直线l:y=
p2
于点M,当|FD|=2时,∠AFD=60°.
(1)求证:△AFQ为等腰三角形,并求抛物线C的方程;
(2)若B位于y轴左侧的抛物线C上,过点B作抛物线C的切线l2交直线l1于点P,交直线l于点N,求△PMN面积的最小值,并求取到最小值时的x1值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•普陀区一模)在平面直角坐标系xOy中,已知抛物线y2=2x的焦点为F,抛物线上一点A的横坐标为1,直线FA与抛物线交于点A、B,求向量
OA
OB
夹角的大小.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省绍兴一中高三(下)回头考数学试卷(理科)(解析版) 题型:解答题

已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点A的横坐标为x1(x1>0),过点A作抛物线C的切线l1交x轴于点D,交y轴于点Q,交直线于点M,当|FD|=2时,∠AFD=60°.
(1)求证:△AFQ为等腰三角形,并求抛物线C的方程;
(2)若B位于y轴左侧的抛物线C上,过点B作抛物线C的切线l2交直线l1于点P,交直线l于点N,求△PMN面积的最小值,并求取到最小值时的x1值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省苏州市张家港外国语学校高二(上)周日数学试卷5(理科)(解析版) 题型:解答题

已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点A的横坐标为x1(x1>0),过点A作抛物线C的切线l1交x轴于点D,交y轴于点Q,交直线l:y=于点M,当|FD|=2时,∠AFD=60°.
(Ⅰ)求证:△AFQ为等腰三角形,并求抛物线C的方程;
(Ⅱ)若B位于y轴左侧的抛物线C上,过点B作抛物线C的切线l2交直线l1于点P,交直线l于点N,求△PMN面积的最小值,并求取到最小值时的x1值.

查看答案和解析>>

同步练习册答案