精英家教网 > 高中数学 > 题目详情

【题目】已知圆O的方程为x2+y2=5.
(1)P是直线y= x﹣5上的动点,过P作圆O的两条切线PC、PD,切点为C、D,求证:直线CD过定点;
(2)若EF、GH为圆O的两条互相垂直的弦,垂足为M(1,1),求四边形EGFH面积的最大值.

【答案】
(1)证明:设P(x0,y0),则

由题意,OCPD四点共圆,且直径是OP,

其方程为 ,即x2+y2﹣x0x﹣y0y=0,

,得:x0x+y0y=5.

∴直线CD的方程为:x0x+y0y=5.

,∴ ,即(2x+y)x0﹣10(y+1)=0.

,得:

∴直线CD过定点


(2)解:设圆心O到直线EF、GH的距离分别为d1、d2,则

当且仅当 ,即d1=d2=1时等号成立.

∴四边形EGFH面积的最大值为8


【解析】(1)设P的坐标,写出以OP为直径的圆的方程,与圆方程联立即可求得直线CD的方程,结合P在直线y= x﹣5,利用线系方程证明直线CD过定点;(2)设圆心O到直线EF、GH的距离分别为d1、d2 , 则 ,代入四边形面积公式,利用基本不等式求得四边形EGFH面积的最大值.
【考点精析】解答此题的关键在于理解圆的标准方程的相关知识,掌握圆的标准方程:;圆心为A(a,b),半径为r的圆的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是奇函数,且对于任意x∈R满足f(2﹣x)=f(x),当0<x≤1时,f(x)=lnx+2,则函数y=f(x)在(﹣2,4]上的零点个数是(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,﹣4).
(1)求BC边上的中线所在直线的方程;
(2)求BC边上的高所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中, (Ⅰ)求证: 是等比数列,并求{an}的通项公式an
(Ⅱ)数列{bn}满足 ,数列{bn}的前n项和为Tn , 若不等式 对一切n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了考查培育的某种植物的生长情况,从试验田中随机抽取100柱该植物进行检测,得到该植物高度的频数分布表如下:

组序

高度区间

频数

频率

1

[230,235)

14

0.14

2

[235,240)

0.26

3

[240,245)

0.20

4

[245,250)

30

5

[250,255)

10

合计

100

1.00

(Ⅰ)写出表中①②③④处的数据;
(Ⅱ)用分层抽样法从第3、4、5组中抽取一个容量为6的样本,则各组应分别抽取多少个个体?
(Ⅲ)在(Ⅱ)的前提下,从抽出的容量为6的样本中随机选取两个个体进行进一步分析,求这两个个体中至少有一个来自第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列{an}中,a1=2,a3 , a2+a4 , a5成等差数列.
(1)求数列{an}的通项公式
(2)若数列{bn}满足b1+ +…+ =an(n∈N*),{bn}的前n项和为Sn , 求使Sn﹣nan+6≥0成立的正整数n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的三内角A、B、C成等差数列,sinA、sinB、sinC成等比数列,则这个三角形的形状是(
A.直角三角形
B.钝角三角形
C.等腰直角三角形
D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2﹣(m+ )x+1
(1)当m=2时,解不等式f(x)≤0
(2)若m>0,解关于x的不等式f(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C1 =1(a>b>0)的左、右焦点分别为F1 , F2 , 点M在双曲线C1的一条渐近线上,且OM⊥MF2 , 若△OMF2的面积为16,且双曲线C1与双曲线C2 =1的离心率相同,则双曲线C1的实轴长为(
A.32
B.16
C.8
D.4

查看答案和解析>>

同步练习册答案