精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,,且底面中点,点上一点.

(1)求证: 平面

(2)求二面角 的余弦值;

(3)设,若,写出的值(不需写过程).

【答案】(1)见解析;(2);(3).

【解析】

1)证明 平面,只要在面内找到一条直线与平行;

2)以分别为xyz轴建立空间直角坐标系,写出两个面的法向量,再求法向量的夹角,结合图形发现二面角的平面角为钝角,从而求得二面角的余弦值。

(3)由可证得平面,进而得到,再利用相似得到中点。

(1)连接,连接

因为四边形为矩形,为对角线,

所以中点,又因为中点,

所以平面平面

所以 //平面.

(2)因为底面,所以底面

,所以以分别为xyz轴建立空间直角坐标系.

.

设平面的法向量为,则有,即

,则.

由题意底面,所以为平面的法向量,

所以,又由图可知二面角为钝二面角,

所以二面角 的余弦值为

(3).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点,直线设圆C的半径为1,圆心在直线l.

1)若圆心C也在直线上,过点作圆C的切线,求切线的方程;

2)若圆C上存在点M,使得,求圆心C的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,有下列四个命题:

①若是奇函数,则的图象关于点对称;

②若对,有,则的图象关于直线对称;

③若对,有,则的图象关于点对称;

④函数与函数的图像关于直线对称.

其中正确命题的序号为__________.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业2018年招聘员工,其中五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:

岗位

男性

应聘人数

男性

录用人数

男性

录用比例

女性

应聘人数

女性

录用人数

女性

录用比例

269

167

40

24

40

12

202

62

177

57

184

59

44

26

38

22

3

2

3

2

总计

533

264

467

169

(1)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;

(2)从应聘岗位的6人中随机选择2人.记为这2人中被录用的人数,求的分布列和数学期望;

(3)表中各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

在如图所示的多面体中,四边形都为矩形。

)若,证明:直线平面

)设分别是线段的中点,在线段上是否存在一点,使直线平面?请证明你的结论。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A{x|x22x3≤0}B{x|x22mx+m24≤0xRmR}

1)若ABA,求实数m的取值;

2)若AB{x|0≤x≤3},求实数m的值;

(3)若A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为 .

(1)求椭圆的方程;

(2)若上存在两点,椭圆上存在两个点满足:三点共线,三点共线,且,求四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:

(1)求第四小组的频率,并补全这个频率分布直方图;

(2)估计这次考试的及格率(60分及以上为及格)和平均分;

(3)从成绩是[40,50)和[90,100]的学生中选两人,求他们在同一分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列与等比数列是非常数的实数列,设.

(1)请举出一对数列,使集合中有三个元素;

(2)问集合中最多有多少个元素?并证明你的结论;

查看答案和解析>>

同步练习册答案