精英家教网 > 高中数学 > 题目详情
在△ABC中,D为BC边的中点,若
BC
=(2,0),
AC
=(1,4),则
AD
=(  )
A、(-2,-4)
B、(0,-4)
C、(2,4)
D、(0,4)
考点:平面向量的坐标运算
专题:平面向量及应用
分析:根据向量的几何意义和向量的坐标运算计算即可
解答: 解:
AD
=
AC
-
DC
=
AC
-
1
2
BC
=(1,4)-
1
2
(2,0)=(1,4)-(1,0)=(0,4),
故选:D.
点评:本题考查了向量的坐标运算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy内作单位圆O,以Ox为始边作角α、β,它们的终边与单位圆O的交点为A,B,则
OA
=
 
OB
=
 
,∠AOB=
 

由向量数量积的定义有
OA
OB
=
 
由向量数量积的坐标表示有
OA
OB
=
 
=
 

于是,cos(α-β)=cosαcosβ+sinαsinβ.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1
3
x3-4x+4.
(1)讨论函数f(x)的单调性;
(2)若对x∈[0,3],都有f(x)<c恒成立,求实数c的取值范围;
(3)若关于x的方程f(x)=m有三个解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
9
-
y2
5
=1
与椭圆
x2
25
+
y2
11
=1
,一定有(  )
A、两离心率之积为1
B、相同的两条准线
C、相同的两个焦点
D、双曲线的实轴长等于椭圆的长轴长

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,若c=2,C=
π
3
m
=(a,b),
p
=(b-2,a-2),且
m
p
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-2sinx+a(x∈[0,
π
2
]),a为常数.
(1)求函数f(x)的极值;
(2)若函数f(x)在[0,
π
2
]上有且仅有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3
2
sin
x
4
cos
x
4
-3
2
cos2
x
4
+
3
2
2

(1)用五点法作出函数在一个周期的图象;
(2)若x∈[
6
11π
6
],求f(x)的值域;
(3)说明此函数可由y=sinx的图象经过怎样的变换得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

求导:f(x)=
1
3
x3+2x2+3x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-1+1-xa+1(a>0,a≠1),则它的图象恒过定点的坐标为
 

查看答案和解析>>

同步练习册答案