精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,将曲线上的所有点横坐标伸长为原来的倍,纵坐标伸长为原来的2倍后,得到曲线,在以为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程是.

(1)写出曲线的参数方程和直线的直角坐标方程;

(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.

【答案】(1)参数方程为为参数),(2)取最大值,点的坐标是

【解析】试题分析:1先求出曲线的普通方程,从而可写出曲线的参数方程利用极坐标与直角坐标方程的互化公式,即可求出直线的直角坐标方程;2根据参数方程设出点坐标得到直线的距离的表达式然后根据三角函数的有界性可求解最大值并求出最大值时的坐标.

试题解析(1)由题意知,曲线C2方程为,参数方程为 (φ为参数)直线l的直角坐标方程为2xy60.

(2)P(cos φ2sin φ),则点P到直线l的距离为

.

sin(60°φ)=-1时,d取最大值,此时取φ150°,点P坐标是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】海南中学对高二学生进行心理障碍测试得到如下列联表:

焦虑

说谎

懒惰

总计

女生

5

10

15

30

男生

20

10

50

80

总计

25

20

65

110

试说明在这三种心理障碍中哪一种与性别关系最大?
参考数据:K2=

P(K2≥k)

0.5

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.535

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市教育局委托调查机构对本市中小学学校使用“微课掌上通”满意度情况进行调查.随机选择小学和中学各50所学校进行调查,调查情况如表:

评分等级

☆☆

☆☆☆

☆☆☆☆

☆☆☆☆☆

小学

2

7

9

20

12

中学

3

9

18

12

8

(备注:“☆”表示评分等级的星级,例如“☆☆☆”表示3星级.)
(1)从评分等级为5星级的学校中随机选取两所学校,求恰有一所学校是中学的概率;
(2)规定:评分等级在4星级以上(含4星)为满意,其它星级为不满意.完成下列2×2列联表并帮助判断:能否在犯错误的概率不超过0.05的前提下认为使用是否满意与学校类别有关系?

学校类型

满意

不满意

总计

小学

50

中学

50

总计

100

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,求解下列问题(1)求函数f(x)的定义域;(2)求f(﹣1),f(12)的值;.
(1)求函数f(x)的定义域;
(2)求f(﹣1),f(12)的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)时,求曲线在点处的切线方程;

(2)是自然对数的底数)时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,区间M=[a,b](a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有(  )
A.1个
B.2个
C.3个
D.无数多个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

(Ⅰ)若圆x2y2=4在伸缩变换 (λ>0)的作用下变成一个焦点在x轴上,且离心率为的椭圆,求λ的值;

(Ⅱ)在极坐标系中,已知点A(2,0),点P在曲线Cρ上运动,求PA两点间的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于集合A={x|x=m2﹣n2 , m∈Z,n∈Z},因为16=52﹣32 , 所以16∈A,研究下列问题:
(1)1,2,3,4,5,6六个数中,哪些属于A,哪些不属于A,为什么?
(2)讨论集合B={2,4,6,8,…,2n,…}中有哪些元素属于A,试给出一个普通的结论,不必证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为(
A.
B.
C.
D.1

查看答案和解析>>

同步练习册答案