精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系. 已知曲线的极坐标方程为 ,直线 的参数方程为 (为参数).

(I)分别求曲线的直角坐标方程和直线 的普通方程;

(II)设曲线和直线相交于两点,求弦长的值.

【答案】(I); (II)2.

【解析】

(I)由极坐标方程与直角坐标方程的互化公式,即可求得曲线的直角坐标方程,消去参数,即求解直线的普通方程.

(II)将直线的参数方程代入圆,利用直线的参数的几何意义,即求解.

(I)由题意,曲线的极坐标方程为

,则,即

又由直线的参数方程为 (为参数),消去参数可得

所以曲线的直角坐标方程为,直线的普通方程为

(II)将代入圆得:,解得:

由直线的参数的几何意义知:弦长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象如图,直线在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为.

(1)求的解析式;

(2)若常数,求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的是某池塘中的浮萍蔓延的面积与时间月)的关系有以下叙述:

①这个指数函数的底数是2;

②第5个月时,浮萍的面积就会超过

③浮萍从蔓延到需要经过1.5个月;

④浮萍每个月增加的面积都相等;

⑤若浮萍蔓延到所经过的时间分别为.其中正确的是

A. ①② B. ①②③④ C. ②③④⑤ D. ①②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处的切线互相垂直,求 值;

(2)讨论函数的零点个数。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个正数ab满足a+b=1

1)求证:

2)若不等式对任意正数ab都成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I) 当时,求函数的单调区间;

(II) 当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为线段上一点,的中点.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线C:=1的右焦点F且与x轴不重合的直线交双曲线C于A、B两个点,定点D(,0).

(1)当直线AB垂直于x轴时,求直线AD的方程.

(2)设直线AD与直线x=1相交于点E,求证:FD∥BE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了日至日的每天昼夜温度与实验室每天每100颗种子中的发芽数,得到如下数据:

日期

温差

发芽数(颗)

由表中根据日至的数据,求的线性回归方程中的,则______,若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,则求得的线性回归方程____.(填“可靠”或“不可幕”)

查看答案和解析>>

同步练习册答案