精英家教网 > 高中数学 > 题目详情

(本小题满分10分)
求过点M(0,1)且和抛物线C: 仅有一个公共点的直线的方程.

x=0或y=1或x-y+1=0.

解析试题分析:过点M与抛物线C有一个公共点包括两种情况,一是过M的直线与抛物线的对称轴平行;二是过M的直线与抛物线相切,当相切时可设出切线方程为y=kx+1它与抛物线方程联立,利用判别式等于零求出k值,还要注意讨论切线斜率不存在的情况.
考点:直线与抛物线的位置关系.
点评:直线与抛物线有一个公共点包括两种情况:一是过M的直线与抛物线的对称轴平行;
二是过M的直线与抛物线相切,当相切时可设出切线方程为y=kx+1它与抛物线方程联立,利用判别式等于零求出k值,还要注意讨论切线斜率不存在的情况.还要注意:若点M在抛物线的外部,则应有两条切线,若点M在抛物线上,应有一条切线,若点M在抛物线内部没有切线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆过点,且离心率e=.
(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知半径为6的圆轴相切,圆心在直线上且在第二象限,直线过点
(Ⅰ)求圆的方程;
(Ⅱ)若直线与圆相交于两点且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆上的任意一点到它的两个焦点的距离之和为,且其焦距为
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线与椭圆交于不同的两点A,B.问是否存在以A,B为直径
的圆 过椭圆的右焦点.若存在,求出的值;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)的短轴长与焦距相等,且过定点,倾斜角为的直线交椭圆两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)确定直线轴上截距的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的焦点,长轴长6,设直线交椭圆两点,求线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,点在椭圆上。
(1)求椭圆的离心率;
(2)若椭圆的短半轴长为,直线与椭圆交于A、B,且线段AB以M(1,1)为中点,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(12分)经过点作直线交双曲线两点,且 为 中点.
(1)求直线的方程 ;(2)求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)(文科)已知曲线的离心率,直线两点,原点的距离是.
(Ⅰ)求双曲线的方程;
(Ⅱ)过点作直线交双曲线于两点,若,求直线的方程.

查看答案和解析>>

同步练习册答案