精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\left\{\begin{array}{l}{kx-2,x>0}\\{-ln(-x),x<0}\end{array}\right.$ 的图象上有两对关于坐标原点对称的点,则实数k的取值范围是(  )
A.(0,1)B.(0,$\frac{1}{e}$)C.(0,+∞)D.(0,e)

分析 求出x>0时关于原点对称的函数g(x)=lnx,由题意可得g(x)的图象和y=kx-2(x>0)的图象有两个交点.设出直线y=kx-2与y=g(x)相切的切点为(m,lnm),求出g(x)的导数,求得切线的斜率,解方程可得切点和k的值,由图象即可得到所求范围.

解答 解:当x<0时,f(x)=-ln(-x),
由f(x)的图象关于原点对称,可得
g(x)=lnx(x>0),
由题意可得g(x)的图象和y=kx-2(x>0)的图象有两个交点.
设直线y=kx-2与y=g(x)相切的切点为(m,lnm),
由g(x)的导数为g′(x)=$\frac{1}{x}$,
即有切线的斜率为$\frac{1}{m}$=k,
又lnm=km-2,解得m=$\frac{1}{e}$,k=e,
由图象可得0<k<e时,有两个交点.
故选:D.

点评 本题考查图象对称问题的解法,注意运用数形结合的思想方法,考查导数的运用:求切线的斜率,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知圆C1:(x+3)2+(y-1)2=4,直线l:14x+8y-31=0,求圆C1关于直线l对称的C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列函数的导数:
(1)y=x3-x2-x+3;
(2)y=$\frac{2}{{x}^{2}}$+$\frac{3}{{x}^{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在100个学生中,有篮球爱好者60人,排球爱好者65人,则既爱好篮球又爱好排球的有25人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求y=ax•sinx的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.对于函数f(x),若存在区间M=[a,b],使得{y|y=f(x),x∈M}=M,则称函数f(x)具有性质P,给出下列3个函数:
①f(x)=sinx;
②f(x)=x3-3x;
③f(x)=lgx+3.
其中具有性质P的函数是②.(填入所有满足条件函数的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若$\root{4}{4{a}^{2}-4a+1}$=$\root{3}{1-2a}$,则实数a的取值范围是(  )
A.a=$\frac{1}{2}$B.a=$\frac{1}{2}$或a=0C.a=0D.a≤$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知命题p:x2+2x-2>0,命题q:x>m,且¬q的一个充分不必要条件是¬p,则实数m的取值范围是[-1+$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:实数m满足:方程$\frac{{x}^{2}}{m-3a}$+$\frac{{y}^{2}}{m-4a}$=1(a>0)表示双曲线;命题q:实数m满足方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示焦点在y轴上的椭圆,且?p是?q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案