精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=2$\sqrt{3}$sin2($\frac{π}{4}$+x)+2cos2x-$\sqrt{3}$.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)求函数f(x)在区间[0,$\frac{π}{2}$]上的值域.

分析 (1)利用倍角公式、和差公式可得f(x)=2$sin(2x+\frac{π}{6})$.即可得出函数f(x)的最小正周期和单调递增区间.
(2)由x∈[0,$\frac{π}{2}$],可得$(2x+\frac{π}{6})$∈$[\frac{π}{6},\frac{7π}{6}]$,利用正弦函数的单调性与值域可得sin$(2x+\frac{π}{6})$∈$[-\frac{1}{2},1]$,即可得出.

解答 解:(1)f(x)=2$\sqrt{3}$sin2($\frac{π}{4}$+x)+2cos2x-$\sqrt{3}$=$\sqrt{3}(1-cos(\frac{π}{2}+2x))$+1+cos2x-$\sqrt{3}$=$\sqrt{3}sin2x$+cos2x=2$sin(2x+\frac{π}{6})$.
∴$T=\frac{2π}{2}$=π,
由$2kπ-\frac{π}{2}$≤$2x+\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,
解得$kπ-\frac{π}{3}$≤x≤$\frac{π}{6}$+kπ,k∈Z,
∴函数f(x)的单调递增区间为[$kπ-\frac{π}{3}$,$\frac{π}{6}$+kπ],k∈Z.
(2)∵x∈[0,$\frac{π}{2}$],∴$(2x+\frac{π}{6})$∈$[\frac{π}{6},\frac{7π}{6}]$,
∴sin$(2x+\frac{π}{6})$∈$[-\frac{1}{2},1]$,
∴函数f(x)在区间[0,$\frac{π}{2}$]上的值域为[-1,2].

点评 本题考查了三角函数的图象与性质、三角函数恒等变换,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知:如图,⊙O是正方形ABCD的外接圆,P是$\widehat{AB}$上的一点,求证:$\frac{PA+PC}{PB+PD}$=$\frac{PD}{PC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2cosA-1)sinB+2cosA=1
(1)求A的大小;
(2)若6b2=a2+3c2,求$\frac{sinB}{sinC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设x0为函数f(x)=sinπx的零点,且满足|x0|+f(x0+$\frac{1}{2}$)<33,则这样的零点有65个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个焦点与抛物线y2=20x的焦点重合,且一条渐近线方程为4x+3y=0.
(1)求双曲线的标准方程;
(2)若双曲线上有一点P使得$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0(F1,F2为双曲线的左,右焦点),求点P的纵坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设P是双曲线$\frac{{x}^{2}}{4}$-y2=1上的意一点,点P到双曲线的两条渐近线的距离分别为d1,d2,则(  )
A.d1+d2=$\frac{4\sqrt{5}}{5}$B.d1•d2=$\frac{4\sqrt{5}}{5}$C.d1+d2=$\frac{4}{5}$D.d1•d2=$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=sin2x的图象平移向量($\frac{π}{3}$,0)后,新图象对应的函数为y=(  )
A.sin(2x-$\frac{2π}{3}$)B.sin(2x+$\frac{π}{3}$)C.sin(2x+$\frac{2π}{3}$)D.sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,F是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点,O是坐标原点,|OF|=$\sqrt{5}$,过F作OF的垂线交椭圆于P0,Q0两点,△OP0Q0的面积为$\frac{4\sqrt{5}}{3}$.
(1)求该椭圆的标准方程;
(2)若直线l与上下半椭圆分别交于点P、Q,与x轴交于点M,且|PM|=2|MQ|,求△OPQ的面积取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.过点B(3,4)作直线,使之与点A(1,1)的距离为2,求该直线方程.

查看答案和解析>>

同步练习册答案