精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2+ax的最小值不小于-1,且f(数学公式数学公式
(1)求函数f(x)的解析式;
(2)设函数F(x)=f(x)-kx+1,x∈[-2,2],记函数F(x)的最小值为g(k),求g(k)的解析式.

解:(1)∵f(x)=x2+ax的最小值不小于-1,∴≥-1,即 a2≤4,-2≤a≤2.
再由f( 可得 -≤-,a≥2.
综上可得,a=2,f(x)=x2+2x.
(2)二次 函数F(x)=f(x)-kx+1=x2+2x-kx+1 的图象开口向上,对称轴为 x=,又 x∈[-2,2],.
,即 k<-2,时,函数F(x)在[-2,2]上是增函数,故当x=-2时,函数F(X)取得最小值为 g(k)=2k+1.
,即-2≤k≤6时,当x=时,函数F(X)取得最小值为 g(k)=-k2+k.
,即 k>6时,函数F(x)在[-2,2]上是减函数,故当x=2时,函数F(X)取得最小值为 g(k)=9-2k.
综上可得,
分析:(1)由f(x)=x2+ax的最小值不小于-1 求得-2≤a≤2.再由f( 可得 a≥2,由此求得a的值,从而得到函数f(x)的解析式.
(2)二次 函数F(x)=f(x)-kx+1=x2+2x-kx+1 的图象开口向上,对称轴为 x=,分对称轴在区间的左边、在区间上、在区间的右边三种情况,分别求出 g(k),从而得出结论.
点评:本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案