【题目】已知函数.
(1)求的最小正周期;
(2)设,若在上的值域为,求实数的值;
(3)若对任意的和恒成立,求实数的取值范围.
【答案】(1);(2)或;(3)
【解析】试题分析:(1)化简 最小正周期;(2)当时, .令,则.
原函数可化为, .再利用分类讨论思想,对求得或;(3)由(2)可知,当时, .①当为偶数时, . .②当为奇数时, 的取值范围是.
试题解析:(1)
.
的最小正周期.
(2)由(1)知.
当时, , ,
即.
令,则.
, .
令, .易知.
①当时, 在上为增函数,
因此,即.解得.
②当时, 在上为减函数,
因此,即.解得.
综上所述, 或.
(3)由(2)可知,当时, .
①当为偶数时, .
由题意,只需.
因为当时, ,所以.
②当为奇数时, .
由题意,只需.
因为当时, ,所以.
综上所述,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。设购进A掀电脑x台,这100台电脑的销售总利润为y元。
①求y与x的关系式;
②该商店购进A型、B型各多少台,才能使销售利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台。若商店保持两种电脑的售价不变,请你以上信息及(2)中的条件,设计出使这100台电脑销售总利润最大的进货方案。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆=1(a>b>0)的离心率e=,连结椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A,B.已知点A的坐标为(-a,0).若|AB|=,求直线l的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医药研究所开发一种新药,在试验药效时发现:如果成人按规定剂量服用,那么服药后每毫升血液中的含药量y(微克)与时间x(小时)之间满足y=其对应曲线(如图所示)过点.
(1)试求药量峰值(y的最大值)与达峰时间(y取最大值时对应的x值);
(2)如果每毫升血液中含药量不少于1微克时治疗疾病有效,那么成人按规定剂量服用该药后一次能维持多长的有效时间(精确到0.01小时)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax+x2-xlna,a>1.
(1)求证:函数f(x)在(0,+∞)上单调递增;
(2)对任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确立下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位: )和年利润(单位:千元)的影响.对近年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
表中
(Ⅰ)根据散点图判断, 与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立关于的回归方程;
(Ⅲ)已知这种产品的年利率与的关系为.根据(Ⅱ)的结果回答下列问题:
(i)年宣传费时,年销售量及利润的预报值是多少?
(ii)年宣传费为何值时,年利率的预报值最大?
附:对于一组数据……,其回归线的斜率和截距的最小二乘法估计分别为: ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)
已知函数(为常数)的图像与轴交于点,曲线在点处的切线斜率为.
(1)求的值及函数的极值;
(2)证明:当时,
(3)证明:对任意给定的正数,总存在,使得当时,恒有
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com