精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)求的最小正周期

(2)设,若上的值域为,求实数的值;

(3)若对任意的恒成立,求实数的取值范围.

【答案】(1);(2);(3)

【解析】试题分析:(1)化简 最小正周期;(2)当时, .令,则

原函数可化为 .再利用分类讨论思想,对求得;(3)由(2)可知,当时, .①当为偶数时, .②当为奇数时, 的取值范围是

试题解析:(1)

的最小正周期

(2)由(1)知

时,

,则

.易知

①当时, 上为增函数,

因此,即.解得

②当时, 上为减函数,

因此,即.解得

综上所述,

(3)由(2)可知,当时,

①当为偶数时,

由题意,只需

因为当时, ,所以

②当为奇数时,

由题意,只需

因为当时, ,所以

综上所述,实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线与直线平行,求的值;

(2)若,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.

(1)求每台A型电脑和B型电脑的销售利润;

(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。设购进A掀电脑x台,这100台电脑的销售总利润为y元。

①求yx的关系式;

②该商店购进A型、B型各多少台,才能使销售利润最大?

(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台。若商店保持两种电脑的售价不变,请你以上信息及(2)中的条件,设计出使这100台电脑销售总利润最大的进货方案。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆1(a>b>0)的离心率e,连结椭圆的四个顶点得到的菱形的面积为4.

(1)求椭圆的方程;

(2)设直线l与椭圆相交于不同的两点AB.已知点A的坐标为(a0).若|AB|,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药研究所开发一种新药在试验药效时发现:如果成人按规定剂量服用那么服药后每毫升血液中的含药量y(微克)与时间x(小时)之间满足y=其对应曲线(如图所示)过点.

(1)试求药量峰值(y的最大值)与达峰时间(y取最大值时对应的x值);

(2)如果每毫升血液中含药量不少于1微克时治疗疾病有效那么成人按规定剂量服用该药后一次能维持多长的有效时间(精确到0.01小时)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)axx2xlnaa>1.

(1)求证:函数f(x)(0,+∞)上单调递增;

(2)对任意x1x2∈[1,1]|f(x1)f(x2)|≤e1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确立下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位: )和年利润(单位:千元)的影响.对近年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

表中

(Ⅰ)根据散点图判断, 哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)

(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立关于的回归方程;

(Ⅲ)已知这种产品的年利率的关系为.根据(Ⅱ)的结果回答下列问题:

(i)年宣传费时,年销售量及利润的预报值是多少?

(ii)年宣传费为何值时,年利率的预报值最大?

附:对于一组数据……,其回归线的斜率和截距的最小二乘法估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

已知函数为常数)的图像与轴交于点,曲线在点处的切线斜率为.

(1)的值及函数的极值;

(2)证明:当时,

(3)证明:对任意给定的正数,总存在,使得当时,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 为自然对数的底数.

(Ⅰ)若函数存在两个零点,求的取值范围;

(Ⅱ)若对任意 恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案