【题目】[选修4-4:坐标系与参数方程]
在直角坐标系中,曲线:(,为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线:.
(1)说明是哪一种曲线,并将的方程化为极坐标方程;
(2)若直线的方程为,设与的交点为,,与的交点为,,若的面积为,求的值.
科目:高中数学 来源: 题型:
【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
交付金额(元) 支付方式 | (0,1000] | (1000,2000] | 大于2000 |
仅使用A | 18人 | 9人 | 3人 |
仅使用B | 10人 | 14人 | 1人 |
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋内有大小完全相同的个黑球和个白球,从中不放回地每次任取个小球,直至取到白球后停止取球,则( )
A.抽取次后停止取球的概率为
B.停止取球时,取出的白球个数不少于黑球的概率为
C.取球次数的期望为
D.取球次数的方差为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆周上分布着2014个点,将其任意染成红、黄两色.若从某一点开始,依任一方向绕圆周运动到任一位置,所经过的点(含自身)红点个数恒大于黄点个数,则称该点为“优点”.为确保圆周上至少有一个优点,求圆周上黄点个数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次数学会议上,任意两位数学家要么是朋友,要么是陌生人.在进餐期间,每位数学家在两个大餐厅中的其中一个就餐,每位数学家所在的餐厅中包含偶数个他(或她)的朋友.证明:数学家能被分到两个餐厅中的不同分法的数目是2的正整数次幕(即形如,其中,是某个正整数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校因为寒假延期开学,根据教育部停课不停学的指示,该学校组织学生线上教学,高一年级在线上教学一个月后,为了了解线上教学的效果,在线上组织数学学科考试,随机抽取50名学生(满分150分,且抽取的学生成绩都在内)的成绩并制成频率分布直方图如图所示.
(1)根据频率分布直方图,估计这50名同学的数学平均成绩;(同一组中的数据以该组区间的中点值作代表)
(2)用分层抽样的方法从成绩在和的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学的数学成绩在同一组中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,是以PF为底边的等腰三角形,PA平行于x轴,点,且点P在直线上运动.记点A的轨迹为C.
(1)求C的方程.
(2)直线AF与C的另一个交点为B,等腰底边的中线与直线的交点为Q,试问的面积是否存在最小值?若存在,求出该值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,动点P(x,y)到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P的轨迹为曲线W,给出下列四个结论:
①曲线W关于原点对称;
②曲线W关于直线y=x对称;
③曲线W与x轴非负半轴,y轴非负半轴围成的封闭图形的面积小于;
④曲线W上的点到原点距离的最小值为
其中,所有正确结论的序号是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com