精英家教网 > 高中数学 > 题目详情
4.设x,y满足约束条件$\left\{\begin{array}{l}{x-2y+1≥0}\\{2x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,目标函数z=x+2y的最大值为(  )
A.10B.7C.4D.1

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.

解答 解:作出不等式组$\left\{\begin{array}{l}{x-2y+1≥0}\\{2x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,对应的平面区域如图:(阴影部分)
由z=x+2y得y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
平移直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
由图象可知当直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
经过点A时,直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
z的截距最大,
此时z最大.
由,解得$\left\{\begin{array}{l}{x-2y+1=0}\\{2x-y-4=0}\end{array}\right.$,解得A(3,2),
代入目标函数z=x+2y得z=3+2×2=7.
故选:B.

点评 本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值,利用数形结合是解决线性规划问题中的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若倾斜角为45°的直线m被平行线l1:x+y-1=0与l2:x+y-3=0所截得的线段为AB,则AB的长为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线m,n满足m?α,n?α,则n⊥m是n⊥α(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,已知正方体ABCD-A1B1C1D1的棱长为1,长为1的线段MN的一个端点M在棱DD1上运动,点N在正方形ABCD内运动,则MN中点P的轨迹的面积为(  )
A.$\frac{π}{2}$B.$\frac{π}{16}$C.$\frac{π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}的首项a1=1,对?n∈N*,都有an+1-an≤3n,an+2-an≥4•3n成立,则a2017=(  )
A.32017-1B.$\frac{{3}^{2017}-1}{2}$C.32017+1D.$\frac{{3}^{2017}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知x≥5,则f(x)=$\frac{{x}^{2}-4x+9}{x-4}$有(  )
A.最大值8B.最小值10C.最大值12D.最小值14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的左焦点为F,右顶点为A,点P在椭圆上,若FP⊥PA,则直线PF的斜率可以是(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在下列三个命题中,真命题的个数是(  )
①?x0∈Z,x03<0;
②方程ax2+2x+1=0至少有一个负实数根的充分条件是a=0;
③抛物线y=4x2的准线方程是:y=1.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知1<m<4,F1,F2为曲线$C:\frac{x^2}{4}+\frac{y^2}{4-m}=1$的左、右焦点,点P为曲线C与曲线$E:{x^2}-\frac{y^2}{m-1}=1$在第一象限的交点,直线l为曲线C在点P处的切线,若三角形F1PF2的内心为点M,直线F1M与直线l交于N点,则点M,N横坐标之和为(  )
A.1B.2C.3D.随m的变化而变化

查看答案和解析>>

同步练习册答案