精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求的极值;

2)若函数在定义域内为增函数,求实数的取值范围;

3)设,若函数存在两个零点,且满足,问:函数处的切线能否平行于轴?若能,求出该切线方程,若不能,请说明理由.

【答案】1极小值极大值23)不能平行于轴,详见解析

【解析】

1)求导,根据导数的正负判断函数的单调性,从而求得极值;

2)根据恒成立,分离参数,利用均值不等式求得最值即可;

3)根据题意,将问题转化为方程是否有根的问题,构造函数,利用导数研究其单调性,即可容易判断.

1)由已知,,令

,或

,则,则

在区间单调递增,在区间单调递减,

故可得极小值极大值.

2.

由题意,知恒成立,即.

,当且仅当时等号成立.

,所以.

3)设的切线平行于轴,

其中

结合题意,

相减得

,又

所以.

.

所以函数上单调递增,

因此,

.

也就是,

所以无解.

所以处的切线不能平行于.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于函数fx=4sin2x+)(x∈R),有下列命题:

①y=fx)的表达式可改写为y=4cos2x﹣);

②y=fx)是以为最小正周期的周期函数;

③y=fx)的图象关于点对称;

④y=fx)的图象关于直线x=﹣对称.

其中正确的命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体P﹣ABCD中,平面ABCD⊥平面PAB ,四边形ABCD为矩形,△PAB为正三角形,若AB=2,AD=1,E,F 分别为AC,BP中点.

(1)求证:EF∥平面PCD;

(2)求直线DP与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)任意向轴上这一区间内投掷一个点,则该点落在区间内的概率是多少?

2)已知向量,若分别表示一枚质地均匀的正方体骰子(六个面的点数分别为123456)先后抛掷两次时第一次、第二次出现的点数,求满足的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了鼓励市民节约用电,某市实行“阶梯式”电价,将每户居民的月用电量分为二档,月用电量不超过200度的部分按0.5元/度收费,超过200度的部分按0.8元/度收费.某小区共有居民1000户,为了解居民的用电情况,通过抽样,获得了今年7月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.

(1)求的值;

(2)试估计该小区今年7月份用电量用不超过260元的户数;

(3)估计7月份该市居民用户的平均用电费用(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,分别是,的中点.

1)求证:平面

2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)若函数在区间上是单调函数,试求实数的取值范围;

(2)已知函数,且,若函数在区间上恰有3个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某公司生产某款手机的年固定成本为40万元,每生产1万只还需另投入16万元.设该公司一年内共生产该款手机万只并全部销售完,每万只的销售收入为万元,且

(1)写出年利润(万元)关于年产量(万只)的函数解析式;

(2)当年产量为多少万只时,该公司在该款手机的生产中所获得的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知)是R上的奇函数,且.

1)求的解析式;

2)若关于x的方程在区间内只有一个解,求m的取值集合;

3)设,记,是否存在正整数n,使不得式对一切均成立?若存在,求出所有n的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案