精英家教网 > 高中数学 > 题目详情

【题目】平面直角坐标系中,已知椭圆)的左焦点为,离心率为,过点且垂直于长轴的弦长为

(1)求椭圆的标准方程;

(2)若过点的直线与椭圆相交于不同两点,求面积的最大值.

【答案】(1) (2)

【解析】试题分析:(1)运用椭圆的离心率公式和过焦点垂直于对称轴的弦长,结合 的关系列出关于的方程组,求出可得椭圆的方程;(2)讨论直线的斜率为和不为,设方程为代入椭圆方程运用韦达定理与弦长公式求得弦长求出点到直线的距离运用三角形的面积公式化简整理,运用换元法和基本不等式即可得到面积的最大值.

试题解析:(1)由题意可得, 令,可得,即有

,所以

所以椭圆的标准方程为

(2)设,直线方程为

代入椭圆方程,整理得

,所以

当且仅当,即.(此时适合的条件)取得等号.

面积的最大值是

【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 ,长轴的右端点与抛物线 的焦点重合,且椭圆的离心率是

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过作直线交抛物线 两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以为顶点的五面体中,平面平面,四边形为平行四边形,且.

(1)求证:

(2)若,直线与平面所成角为,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左右焦点分别为关于直线的对称点在直线上.

(1)求椭圆的离心率;

(2)若过焦点垂直轴的直线被椭圆截得的弦长为,斜率为的直线交椭圆于两点,问是否存在定点,使得的斜率之和为定值?若存在,求出所有满足条件的点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在平行四边形中,分别为的中点,现把平行四边形1沿折起如图2所示,连接

(1)求证:

(2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数(其中).

(1)求函数的单调区间;

(2)当时,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是减函数,求实数的取值范围;

(2)若函数上存在两个极值点证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数有四个零点,则实数的取值范围是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,四边形是菱形,.

(Ⅰ)求证:

(Ⅱ)求二面角的平面角的正切值.

查看答案和解析>>

同步练习册答案