精英家教网 > 高中数学 > 题目详情
tanθ=
b
a
(a≠0)是acos2θ+bsin2θ=a的
(  )
A、充要条件
B、必要不充分条件
C、充分不必要条件
D、即非充分又非必要条件
分析:先判断p?q与q?p的真假,再根据充要条件的定义给出结论;也可判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
解答:解:∵acos2θ+bsin2θ=
a(1-tan2θ)+2btanθ
1+tan2θ

tanθ=
b
a
(a≠0)
时,acos2θ+bsin2θ=
a(1-
b2
a2
)+2b
b
a
1+
b2
a2
=a
当a=b=0时,acos2θ+bsin2θ=a成立,而tanθ=
b
a
(a≠0)
不成立.
故,tanθ=
b
a
(a≠0)
是acos2θ+bsin2θ=a的充分不必要条件
故选C
点评:判断充要条件的方法是:
①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;
②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;
③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;
④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.
⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:tanθ=
ba
,求证:acos2θ+bsin2θ=a.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•佛山二模)已知平面直角坐标系上的三点A(0,1),B(-2,0),C(cosθ,sinθ)(θ∈(0,π)),且
BA
OC
共线.
(1)求tanθ;
(2)求sin(2θ-
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•佛山二模)已知平面直角坐标系上的三点A(0,1)、B(-2,0)、C(cosθ,sinθ)(θ∈(0,π)),且
BA
OC
共线.
(1)求tanθ;
(2)求sin(θ-
π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(9)下列各小题中,p是q的充要条件的是

①p:m<-2或m>6;q:y=x2+mx+m+3有两个不同的零点.

②p:=1;        q:y=f(x)是偶函数.

③p:cosα=cosβ;       q:tanα=tanβ.

④p:A∩B=A;          q:BA.

A. ①②               B. ②③                 C. ③④             D. ①④

查看答案和解析>>

同步练习册答案