精英家教网 > 高中数学 > 题目详情

【题目】在某中学高中某学科竞赛中,该中学100名考生的参赛成绩统计如图所示.

(1)求这100名考生的竞赛平均成绩(同一组中数据用该组区间中点作代表);

(2)记70分以上为优秀,70分及以下为合格,结合频率分布直方图完成下表,并判断是否有99%的把握认为该学科竞赛成绩与性别有关?

合格

优秀

合计

男生

18

女生

25

合计

100

附:

0.050

0.010

0.005

3.841

6.635

7.879

【答案】(1) (2)填表见解析,不能判断有99%的把握认为该学科竞赛成绩与性别有关

【解析】

(1)由每一组数据的中点值乘以该组的频率求和得答案;(2)计算70分以上的频率和频数,由此填写列联表,由表中数据计算观测值,对照临界值得出结论.

(1)由频率分布直方图,计算平均数为

(2)由题意,70分以上的频率为

频数为

70分及以下为

由此填写列联表如下;

合格

优秀

合计

男生

18

30

48

女生

27

25

52

合计

45

55

100

由表中数据,计算≈2.098<6.635;

不能判断有99%的把握认为该学科竞赛成绩与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最小值为60°;
其中正确的是(填写所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足an= (n≥2),若{an}为等比数列,则a1的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱台中, 侧面与侧面是全等的梯形,若,且.

(Ⅰ)若 ,证明: ∥平面

(Ⅱ)若二面角,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市在对学生的综合素质评价中,将其测评结果分为“优秀、合格、不合格”三个等级,其中不小于80分为“优秀”,小于60分为“不合格”,其它为“合格”. 参考公式:K2= ,其中n=a+b+c+d.
临界值表:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635


(1)某校高一年级有男生500人,女生400人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高一学生中抽取45名学生的综合素质评价结果,其各个等级的频数统计如下表:

等级

优秀

合格

不合格

男生(人)

15

x

5

女生(人)

15

3

y

根据表中统计的数据填写下面2×2列联表,并判断是否有90%的把握认为“综合素质评价测评结果为优秀与性别有关”?

优秀

男生

女生

总计

非优秀

总计


(2)以(1)中抽取的45名学生的综合素质评价等级的频率作为全市各个评价等级发生的概率,且每名学生是否“优秀”相互独立,现从该市高一学生中随机抽取3人. ①求所选3人中恰有2人综合素质评价为“优秀”的概率;
②记X表示这3人中综合素质评价等级为“优秀”的个数,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若在圆上存在点使得成立,则的取值范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果直线y=kx+1与圆x2+y2+kx+my﹣4=0交于M、N两点,且M、N关于直线x+y=0对称,则不等式组:表示的平面区域的面积是( )
A.
B.
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等比数列,前n项和为Sn(n∈N*),且 = ,S6=63.
(1)求{an}的通项公式;
(2)若对任意的n∈N* , bn是log2an和log2an+1的等差中项,求数列{(﹣1)n bn2}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案