精英家教网 > 高中数学 > 题目详情

【题目】命题p:若0<a<1,则不等式ax2﹣2ax+1>0在R上恒成立,命题q:a≥1是函数 在(0,+∞)上单调递增的充要条件;在命题 ①“p且q”、②“p或q”、③“非p”、④“非q”中,假命题是

【答案】①③
【解析】解:命题p:△=4a2﹣4a=4a(a﹣1),∵0<a<1,∴△<0,∴不等式ax2﹣2ax+1>0在R上恒成立,∴该命题为真命题; 命题q:f′(x)=a+ ,若f(x)在(0,+∞)上单调递增,则f′(x)>0,即ax2+1>0,若a≥0,该不等式成立;若a<0,解该不等式得:﹣ <x< ,即此时函数f(x)在(0,+∞)上不单调递增,∴a≥0是函数f(x)在(0,+∞)上单调递增的充要条件,∴该命题为假命题;
∴p且q为假命题,p或q为真命题,非p为假命题,非q为真命题;
∴假命题为:①③,
所以答案是:①③;
【考点精析】解答此题的关键在于理解复合命题的真假的相关知识,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= cosx(sinx+cosx).
(1)若0<α< ,且sinα= ,求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a、b、c,已知
(1)求sinB的值;
(2)求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校高三学生中随机抽取了名学生,统计了期末数学考试成绩如下表:

(1)请在频率分布表中的①、②位置上填上相应的数据,并在给定的坐标系中作出这些数据的频率分布直方图,再根据频率分布直方图估计这名学生的平均成绩;

(2)用分层抽样的方法在分数在内的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求至少有人的分数在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线在直角坐标系中的参数方程为为参数, 为倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,在极坐标系中,曲线的方程为.

(1)写出曲线的直角坐标方程;

(2)点,若直线与曲线交于两点,求使为定值的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线经过点M( ).
(1)如果此双曲线的渐近线为 ,求双曲线的标准方程;
(2)如果此双曲线的离心率e=2,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 底面 分别是 的中点, 上,且

(1)求证: 平面

(2)在线段上上是否存在点,使二面角

的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(2cos2x, ), =(1,sin2x),函数f(x)= ﹣1.
(1)当x= 时,求|a﹣b|的值;
(2)求函数f(x)的最小正周期以及单调递增区间;
(3)求方程f(x)=k,(0<k<2),在[﹣ ]内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形的边长为2, 的中点,以点为圆心, 长为半径作圆,点是该圆上的任一点,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案