精英家教网 > 高中数学 > 题目详情
己知⊙O:x2+y2=6,P为⊙O上动点,过P作PM⊥x轴于M,N为PM上一点,且
(1)求点N的轨迹C的方程;
(2)若A(2,1),B(3,0),过B的直线与曲线C相交于D、E两点,则是否为定值?若是,求出该值;若不是,说明理由.
(1) (2)

试题分析:(1) 求动点轨迹方程的步骤,一是设所求动点坐标,涉及两个动点问题,往往是通过相关点法求对应轨迹方程,此时也要设已知轨迹上的动点,则,二是列出动点满足的条件,用未知动点坐标表示已知动点坐标,即,三是代入化简,,四是去杂,主要看是否等价转化,本题无限制条件, (2)定值问题,往往是坐标化简问题,即多参数消元问题. 利用斜率公式,直线方程化简,再利用韦达定理代入化简得常数,从过程看是四元变为二元,再变为一元,最后变为常数,一个逐步消元的运算过程,有运算量,无思维量.
试题解析:(1)设,,则,,
,得,               3分
由于点在圆上,则有,即.
的轨迹的方程为.                      6分
(2) 设,,过点的直线的方程为,
消去得: ,其中
;                      8分

                 10分


是定值.                              13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知椭圆C:+=1(a>0,b>0)的右焦点为F(3,0),且点(-3,)在椭圆C上,则椭圆C的标准方程为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设点P是圆x2y2=4上任意一点,由点Px轴作垂线PP0,垂足为P0,且.
(1)求点M的轨迹C的方程;
(2)设直线lykxm(m≠0)与(1)中的轨迹C交于不同的两点AB.
若直线OAABOB的斜率成等比数列,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆方程为x2+=1,过点M(0,1)的直线l交椭圆于A,B两点,O是坐标原点,点P满足=(+),当l绕点M旋转时,动点P的轨迹方程为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知点B是椭圆+=1(a>b>0)的短轴位于x轴下方的端点,过B作斜率为1的直线交椭圆于点M,点P在y轴上,且PM∥x轴,·=9,若点P的坐标为(0,t),则t的取值范围是(  )
A.0<t<3B.0<t≤3
C.0<t<D.0<t≤

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过椭圆Γ=1(ab>0)右焦点F2的直线交椭圆于AB两点,F1为其左焦点,已知△AF1B的周长为8,椭圆的离心率为.
(1)求椭圆Γ的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆Γ恒有两个交点PQ,且?若存在,求出该圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线交椭圆C于A,B两点,且△ABF2的周长为8.过定点M(0,3)的直线l1与椭圆C交于G,H两点(点G在点M,H之间).
(1)求椭圆C的方程;
(2)设直线l1的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形为菱形?如果存在,求出m的取值范围;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆为上顶点,为左焦点,为右顶点,且右顶点到直线的距离为,则该椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆C=1(ab>0)恒过定点A(1,2),则椭圆的中心到准线的距离的最小值________.

查看答案和解析>>

同步练习册答案