精英家教网 > 高中数学 > 题目详情

【题目】已知a∈R,函数f(x)=log2 +a).
(1)当a=1时,解不等式f(x)>1;
(2)若关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素,求a的值;
(3)设a>0,若对任意t∈[ ,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.

【答案】
(1)解:当a=1时,不等式f(x)>1化为: >1,

2,化为: ,解得0<x<1,

经过验证满足条件,因此不等式的解集为:(0,1)


(2)解:方程f(x)+log2(x2)=0即log2 +a)+log2(x2)=0,∴( +a)x2=1,化为:ax2+x﹣1=0,

若a=0,化为x﹣1=0,解得x=1,经过验证满足:关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素1.

若a≠0,令△=1+4a=0,解得a= ,解得x=2.经过验证满足:关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素1.

综上可得:a=0或﹣


(3)解:a>0,对任意t∈[ ,1],函数f(x)在区间[t,t+1]上单调递减,

≤1,

≤2,

化为:a≥ =g(t),t∈[ ,1],

g′(t)= = = <0,

∴g(t)在t∈[ ,1]上单调递减,∴t= 时,g(t)取得最大值, =

∴a的取值范围是


【解析】(1)当a=1时,不等式f(x)>1化为: >1,因此 2,解出并且验证即可得出.(2)方程f(x)+log2(x2)=0即log2 +a)+log2(x2)=0,( +a)x2=1,化为:ax2+x﹣1=0,对a分类讨论解出即可得出.(3)a>0,对任意t∈[ ,1],函数f(x)在区间[t,t+1]上单调递减,由题意可得 ≤1,因此 ≤2,化为:a≥ =g(t),t∈[ ,1],利用导数研究函数的单调性即可得出.
【考点精析】认真审题,首先需要了解函数的最值及其几何意义(利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值),还要掌握指、对数不等式的解法(指数不等式的解法规律:根据指数函数的性质转化;对数不等式的解法规律:根据对数函数的性质转化)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x),满足f(x+1)=f(x﹣1),且f(x)在[﹣3,﹣2]上是增函数,又α、β是锐角三角形的两个内角,则(
A.f(sinα)>f(cosβ)
B.f(cosα)<f(cosβ)
C.f(sinα)<f(cosβ)
D.f(sinα)<f(sinβ)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知| |=1,| |=
(1)若 的夹角为60°,求| + |;
(2)若 垂直,求 的夹角.
(3)若 ,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面积为 ,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 为f(x)的零点,x= 为y=f(x)图象的对称轴,且f(x)在( )上单调,则ω的最大值为(
A.11
B.9
C.7
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin 的图象,只需把函数y=sin3x的图象上所有的点(
A.向左平移 个单位长度
B.向左平移 个单位长度
C.向右平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列结论中: ①函数y=sin(kπ﹣x)(k∈Z)为奇函数;
②函数 的图象关于点 对称;
③函数 的图象的一条对称轴为 π;
④若tan(π﹣x)=2,则cos2x=
其中正确结论的序号为(把所有正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如图,已知分数在100~110的学生数有21人. (Ⅰ)求总人数N和分数在110~115分的人数n;
(Ⅱ)现准备从分数在110~115分的n名学生(女生占 )中任选2人,求其中恰好含有一名女生的概率;
(Ⅲ)为了分析某个学生的学习状态,对其下一阶段的学习提供指导性建议,对他前7次考试的数学成绩x(满分150分),物理成绩y进行分析,下面是该生7次考试的成绩.

数学

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知该生的物理成绩y与数学成绩x是线性相关的,若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?
附:对于一组数据(u1 , v1),(u2 , v2),,(un , vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sin(2x+ ),sinx), =(1,sinx),f(x)=
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=2 ,若 sin(A+C)=2cosC,求b的大小.

查看答案和解析>>

同步练习册答案