精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴的直线与椭圆相交于两点.

1)求椭圆的方程;

2)求的取值范围.

【答案】1;(2

【解析】试题分析:(1)设椭圆的方程,若焦点明确,设椭圆的标准方程,结合条件用待定系数法求出的值,若不明确,需分焦点在轴和轴上两种情况讨论;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.

试题解析:解:(1)由题意知

.又双曲线的焦点坐标为

椭圆的方程为.

2)若直线的倾斜角为,则

当直线的倾斜角不为时,直线可设为

,由

,综上所述:范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 分别是的中点, 平面 ,二面角.

(1)证明:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2015高考湖北(理)20】某厂用鲜牛奶在某台设备上生产两种奶制品.生产1吨产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天产品的产量不超过产品产量的2倍,设备每天生产两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为

W

12

15

18

P

0.3

0.5

0.2

该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利(单位:元)是一个随机变量.

)求的分布列和均值;

若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,有下列说法:
①若f(a)f(b)>0,则函数y=f(x)在区间(a,b)上没有零点;
②若f(a)f(b)>0,则函数y=f(x)在区间(a,b)上可能有零点;
③若f(a)f(b)<0,则函数y=f(x)在区间(a,b)上没有零点;
④若f(a)f(b)<0,则函数y=f(x)在区间(a,b)上至少有一个零点;
其中正确说法的序号是(把所有正确说法的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线 与椭圆 在第一象限的交点为 为坐标原点, 为椭圆的右顶点, 的面积为.

求抛物线的方程;

点作直线 两点,射线分别交两点,记的面积分别为,问是否存在直线,使得?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到点和直线l 的距离相等.

(Ⅰ)求动点的轨迹E的方程;

(Ⅱ)已知不与垂直的直线与曲线E有唯一公共点A,且与直线的交点为,以AP为直径作圆.判断点和圆的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中,表示同一函数的是( )
A.
与g(x)=x﹣1
B.f(x)=2|x|与
C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方形与直角梯形所在平面互相垂直,

(I)求证: 平面

(II)求证: 平面

(III)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为(

A.588
B.480
C.450
D.120

查看答案和解析>>

同步练习册答案