精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形是矩形,沿对角线折起,使得点在平面上的射影恰好落在边上.

(1)求证:平面平面

(2)当时,求二面角的余弦值.

【答案】I见解析;II.

【解析】试题分析1)先证明. 结合,得平面,又平面

所以平面平面.

2)以点为原点,线段所在的直线为轴,线段所在的直线为轴,建立空间直角坐标系,用向量法求解即可.

试题解析:(1)设点在平面上的射影为点,连接

平面,所以.

因为四边形是矩形,所以,所以平面

所以.

,所以平面,而平面

所以平面平面.

2)方法1:在矩形中,过点的垂线,垂足为,连结.

因为平面 ,又DM∩DE=D

所以平面

所以为二面角的平面角.

,则.

易求出 .

中,

所以.

方法2:以点为原点,线段所在的直线为轴,线段所在的直线为轴,建立空间直角坐标系,如图所示.

,则,所以 .

由(I)知,又,所以°°,那么

所以,所以 .

设平面的一个法向量为,则

,则 ,所以.

因为平面的一个法向量为

所以.

所以求二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】十九大以来,国家深入推进精准脱贫,加大资金投入,强化社会帮扶,为了更好的服务于人民,派调查组到某农村去考察和指导工作.该地区有200户农民,且都从事水果种植,据了解,平均每户的年收入为3万元.为了调整产业结构,调查组和当地政府决定动员部分农民从事水果加工,据估计,若能动员户农民从事水果加工,则剩下的继续从事水果种植的农民平均每户的年收入有望提高,而从事水果加工的农民平均每户收入将为万元.

1)若动员户农民从事水果加工后,要使从事水果种植的农民的总年收入不低于动员前从事水果种植的农民的总年收入,求的取值范围;

2)在(1)的条件下,要使这200户农民中从事水果加工的农民的总收入始终不高于从事水果种植的农民的总收入,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥OABCD中,OA⊥底面ABCD,且底面ABCD是边长为2的正方形,且OA2MN分别为OABC的中点.

1)求证:直线MN平面OCD

2)求点B到平面DMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,(  )

A. p1<p2<p3 B. p2<p1<p3

C. p1<p3<p2 D. p3<p1<p2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)求函数的单调减区间;

2)若函数在区间上的极大值为8,求在区间上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市有两家共享单车公司,在市场上分别投放了黄、蓝两种颜色的单车,已知黄、蓝两种颜色的单车的投放比例为2:1.监管部门为了了解两种颜色的单车的质量,决定从市场中随机抽取5辆单车进行体验,若每辆单车被抽取的可能性相同.

(1)求抽取的5辆单车中有2辆是蓝色颜色单车的概率;

(2)在骑行体验过程中,发现蓝色单车存在一定质量问题,监管部门决定从市场中随机地抽取一辆送技术部门作进一步抽样检测,并规定若抽到的是蓝色单车,则抽样结束,若抽取的是黄色单车,则将其放回市场中,并继续从市场中随机地抽取下一辆单车,并规定抽样的次数最多不超过)次.在抽样结束时,已取到的黄色单车以表示,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.

方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.

方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.

(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;

(2)若某顾客获得抽奖机会.

①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;

②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,当时,的极大值为;当时,有极小值。求:

1的值;

2)函数的极小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且经过点,两个焦点分别为.

1)求椭圆的方程;

2)过的直线与椭圆相交于两点,若的内切圆半径为,求以为圆心且与直线相切的圆的方程.

查看答案和解析>>

同步练习册答案