精英家教网 > 高中数学 > 题目详情

【题目】已知命题p: <1,q:x2+(a﹣1)x﹣a>0,若p是q的充分不必要条件,则实数a的取值范围是(
A.(﹣2,﹣1]
B.[﹣2,﹣1]
C.[﹣3,﹣1]
D.[﹣2,+∞)

【答案】A
【解析】解:命题p: 可得, ,即:x<1或x>2, 命题q:x2+(a﹣1)x﹣a>0,即(x+a)(x﹣1)>0,
若﹣a=1,即a=﹣1,不等式(x+a)(x﹣1)>0的解是x≠1,符合p是q的充分不必要条件;
若﹣a>1,即a<﹣1,不等式(x+a)(x﹣1)>0的解是x>﹣a,或x<1,由x<1或x>2,得到﹣a<2,符合p是q的充分不必要条件;
若﹣a<1,即a>﹣1,不等式(x+a)(x﹣1)>0的解是x>1,或x<﹣a,∵p是q的充分不必要条件,q:x<1或x>2,不满足P是q的充分条件;
综上得a的取值范围是(﹣2,﹣1].
故选:A.
求解命题P,通过讨论a的取值,从而解出不等式(x+a)(x﹣1)>0,判断所得解能否使p是q的充分不必要条件,或限制a后能使p是q的充分不必要条件,综合以上求得的a的范围求并集即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】惠城某影院共有100个座位,票价不分等次.根据该影院的经营经验,当每张标价不超过10元时,票可全部售出;当每张票价高于10元时,每提高1元,将有3张票不能售出.为了获得更好的收益,需给影院定一个合适的票价,符合的基本条件是: ①为方便找零和算帐,票价定为1元的整数倍;
②影院放映一场电影的成本费用支出为575元,票房收入必须高于成本支出.
用x(元)表示每张票价,用y(元)表示该影院放映一场的净收入(除去成本费用支出后的收入).
(Ⅰ)把y表示成x的函数,并求其定义域;
(Ⅱ)试问在符合基本条件的前提下,每张票价定为多少元时,放映一场的净收入最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1:x2+y2=4与圆C2:(x﹣1)2+(y﹣3)2=4,过动点P(a,b)分别作圆C1、圆C2的切线PM,PN,(M,N分别为切点),若|PM|=|PN|,则a2+b2﹣6a﹣4b+13的最小值是(
A.5
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为C的圆经过O(0,0))和A(4,0)两点,线段OA的垂直平分线和圆C交于M,N两点,且|MN|=2
(1)求圆C的方程
(2)设点P在圆C上,试问使△POA的面积等于2的点P共有几个?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点的椭圆C经过点A(2,3),且点F (2,0)为其右焦点.
(1)求椭圆C的方程和离心率e;
(2)若平行于OA的直线l与椭圆有公共点,求直线l在y轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , S3=﹣15,且a1+1,a2+1,a4+1成等比数列,公比不为1.
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设两个非零向量 不共线.
(1)若 = + =2 +8 =3( ).求证:A,B,D三点共线;
(2)试确定实数k,使k + +k 共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且cos2A+cos2B+2sinAsinB=2coc2C. (Ⅰ)求角C的值;
(Ⅱ)若△ABC为锐角三角形,且 ,求a﹣b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求时,求的单调区间;

(2)讨论在定义域上的零点个数.

查看答案和解析>>

同步练习册答案