精英家教网 > 高中数学 > 题目详情
如图,己知平行四边形1BCD中,∠B1D=6三°,1B=6,1D=3,G为CD中点,现将梯形1BCG沿着1G折起到1FoG.
(1)求证:直线Co平面1BF;
(2)如果FG⊥平面1BCD求二面B-oF-1的平面角的余弦值.
(1)证明:如图,∵ABCD是平行四边形,
∴C十AB,∴C十平面ABF,十如AF,
∴十如平面ABF,∵十如∩十C=十,∴平面C如十平面ABF.
∴C如平面ABF;
(2)∵∠BAD=60°,AB=6,AD=八,十为CD中点,∴B十=十C=BC=八,
由余弦定理A十2=AD2+十D2-2AD•十D•COS120°=27,
∴A十2+B十2=AB2,∴A十⊥B十
又F十⊥平面ABCD,
∴以十A、十B、十F为坐标轴建立如图空间直角坐标系,则
A(八
,0,0),B(0,八,0),F(0,0,八)
C(-
2
2
,0)

∴平面A如F的法向量
n1
=
十B
=(0,八,0)
BC
=(-
2
,-
2
,0)
BF
=(0,-八,八)

设平面BF如C的法向量为
n2
=
n
=(x,y,z)
,则
n
BC
=0
n
BF
=0
,∴
-八
x-八y=0
-八y+八z=0

令y=1,则x=-
,z=1
,∴
n
=(-
,1,1)

cosθ=|cos<
n1
n2
>|
=|
n1
n2
|
n1
|•|
n2
|
|
=|
八×
(-
)2+12+12
|
=
21
7
即为所求.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点.
(1)求证:平面AED⊥平面A1FD1
(2)在AE上求一点M,使得A1M⊥平面ADE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,底面ABCD,且PA=AD=DC=AB=1,M是PB的中点。(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角的余弦值;(Ⅲ)求面AMC与面BMC所成二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

P是平面ABCD外的点,四边形ABCD是平行四边形,
AB
=(2,-1,-4),
AD
=(4,2,0),
AP
=(-1,2,-1).
(1)求证:PA⊥平面ABCD;
(2)对于向量
a
=(x1,y1z1),
b
=(x2y2z2),
c
=(x3y3z3)
,定义一种运算:(
a
×
b
)•
c
=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2z3-x3y2z1
,试计算(
AB
×
AD
)-
AP
的绝对值;说明其与几何体P-ABCD的体积关系,并由此猜想向量这种运算(
AB
×
AD
)-
AP
的绝对值的几何意义.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1的侧棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1上动点,F是AB中点,AC=1,BC=2,AA1=4.
(1)当E是棱CC1中点时,求证:CF平面AEB1
(2)在棱CC1上是否存在点E,使得二面角A-EB1-B的余弦值是
2
17
17
,若存在,求CE的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平行六面体ABCD-A1B1C1D1中,若AB=1,AD=2,AA1=3,∠BAD=90°,∠BAA1=∠DAA1=60°.
(1)求AC1的长;
(2)求异面直线AC1与A1B所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)证明:CD⊥AE;
(2)证明:PD⊥平面ABE;
(3)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AA1=AD=2,点E在棱CD上,且CE=
1
3
CD

(1)求证:AD1⊥平面A1B1D;
(2)在棱AA1上是否存在点P,使DP平面B1AE?若存在,求出线段AP的长;若不存在,请说明理由;
(3)若二面角A-B1E-A1的余弦值为
30
6
,求棱AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AB=2,AC=AA1=2
3
,∠ABC=
π
3

(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的正弦值.

查看答案和解析>>

同步练习册答案