精英家教网 > 高中数学 > 题目详情
3.设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x-2)>0}=(  )
A.{x|x<-2或x>4}B.{x|x<0或x>4}C.{ x|x<0或x>6}D.{ x|x<-2或x>5}

分析 依题意,通过对x-2≥0与x-2<0的讨论,解不等式f(x-2)>0即可求得答案.

解答 解:当x-2≥0,即x≥2时,
联立f(x-2)=(x-2)3-8>0得:x>4;
∵y=f(x)为偶函数,
∴当x-2<0,即x<2时,f(x-2)=f(2-x)=(2-x)3-8,
由(2-x)3-8>0得:x<0;
综上所述,原不等式的解集为:{x|x<0或x>4}.
故选:B.

点评 本题考查指数不等式的解法,着重考查偶函数性质与指数函数的性质的综合应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知等差数列{an}的前n项和为Sn,公差d>0,且a2a3=40,a1+a4=13,公比为q(0<q<1)的等比数列{bn}中,b1、b3、b5∈{$\frac{1}{60}$,$\frac{1}{32}$,$\frac{1}{20}$,$\frac{1}{8}$,$\frac{1}{2}$}.
(1)求数列{an}、{bn}的通项公式an、bn
(2)若数列{cn}满足c2n-1=an,c2n=bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在棱长为1的正方体ABCD-A1B1C1D1中,点P是正方体棱上的一点(不包括棱的端点),若满足|PB|+|PD1|=m的点P的个数为6,则m的取值范围是($\sqrt{3}$,$\sqrt{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知当x=$\frac{π}{4}$时,函数f(x)=sin(x+φ)取得最小值,则函数y=f($\frac{3π}{4}$-x)(  )
A.是奇函数且图象关于点($\frac{π}{2}$,0)对称B.是偶函数且图象关于点(π,0)对称
C.是奇函数且图象关于直线x=$\frac{π}{2}$对称D.是偶函数且图象关于直线x=π对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D、E、F分别为AC、AB、AP的中点,M、N分别为线段PC、PB上的动点,且有MN⊥PC.
(Ⅰ)求证:DE∥平面FMN;
(Ⅱ)若M是PC的中点,证明:平面FMN⊥平面DMN.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=x4+ax,若曲线y=f(x)在x=1处的切线斜率为1,那么a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a为实数,若复数z=(a2-1)+(a+1)i为纯虚数,则$\frac{a+{i}^{2015}}{1+i}$的值为(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在直角△ABC中,斜边AC=1,∠BAC=30°,将直角△ABC绕直角边AB旋转一周所形成的几何体的体积为(  )
A.$\frac{{\sqrt{3}}}{24}π$B.$\frac{{\sqrt{3}}}{8}π$C.$\frac{1}{16}π$D.$\frac{1}{8}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)判断并证明函数f(x)=x+$\frac{4}{x}$在区间(2,+∞)上的单调性;
(2)试写出f(x)=x+$\frac{a}{x}$(a>0)在(0,+∞)上的单调区间(不用证明);
(3)根据(2)的结论,求f(x)=x+$\frac{16}{x}$在区间[1,8]上的最大值与最小值.

查看答案和解析>>

同步练习册答案