【题目】新高考3+3最大的特点就是取消文理科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这6科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全理(选择物理、化学、生物)的选择是否与性别有关决定从某学校高一年级的650名学生中随机抽取男生、女生各25人进行模拟选科经统计,选择全理的人数比不选全理的人数多10人
(1)请完成下面的2×2列联表;
选择全理 | 不选择全理 | 合计 | |
男生 | 5 | ||
女生 | |||
合计 |
(2)估计有多大把握认为选择全理与性别有关,并说明理由.
附:,其中n=a+b+c+d
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
科目:高中数学 来源: 题型:
【题目】已知函数,且当时,的最小值为2,
(1)求的值,并求的单调递增区间.
(2)若将函数的图象上的点的纵坐标不变,横坐标缩小到原来的,再将所得的图象向右平移个单位长度,得到函数的图象,求方程在区间上所有根之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面使用类比推理正确的是( )
A. 直线a∥b,b∥c,则a∥c,类推出:向量,则
B. 同一平面内,直线a,b,c,若a⊥c,b⊥c,则a∥b.类推出:空间中,直线a,b,c,若a⊥c,b⊥c,则a∥b
C. 实数a,b,若方程x2+ax+b=0有实数根,则a2≥4b.类推出:复数a,b,若方程x2+ax+b=0有实数根,则a2≥4b
D. 以点(0,0)为圆心,r为半径的圆的方程为x2+y2=r2.类推出:以点(0,0,0)为球心,r为半径的球的方程为x2+y2+z2=r2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, 是函数的导函数,则的图象大致是( )
A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]
C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4―4:坐标系与参数方程]
在直角坐标系,曲线的参数方程为(为参数,).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线.
(1)说明是哪种曲线,并将的方程化为极坐标方程;
(2)已知与的交于,两点,且过极点,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学习小组通过对某商场一种品牌服装销售情况的调查发现:该服装在过去的一个月内(以天计),日销售量 (件)与时间x (天)的部分数据如下表所示,给出以下四种函数模型:① ,② ,③ ④.请你根据上表中的数据,从中选择你认为最合适的一种函数来描述日销售量(件)与时间x(天)的变化关系,请将你选择的函数序号填写在横线上__________.(不需要求出具体解析式)
x (天) | 10 | 20 | 25 | 30 |
(件) | 110 | 120 | 125 | 120 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com