【题目】设,,…,为取自某总体的样本,其算术平均值称为样本均值,一般用表示,即,在分组样本场合,样本均值的近似公式为,其中k为组数,为第i组的组中值,为第i组的频数.某单位收集到20名青年的某天娱乐支出费用数据:
79 84 84 88 92 93 94 97 98 99
100 101 101 102 102 108 110 113 118 125
若将分为五组,第一组为,根据分组样本计算样本均值为( )
A.99.4B.143.16C.100D.11.96
科目:高中数学 来源: 题型:
【题目】已知集合,若对于任意,存在,使得成立,则称集合是“集合”.给出下列5个集合:
①;②;③;
④;⑤.
其中是“集合”的所有序号是( )
A.②③B.①④⑤C.②③⑤D.①②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若存在区间,使得,则称函数为“可等域函数”,区间为函数的一个“可等域区间”.给出下列4个函数:
①;②; ③; ④.
其中存在唯一“可等域区间”的“可等域函数”为( )
(A)①②③ (B)②③ (C)①③ (D)②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,满足.设为上任一点,过作的切线,其斜率满足
(1)求函数的解析式;
(2)若数列满足.设为正常数.
①求;
②若不等式对任意的恒成立,则实数是否存在最大值?若存在,请求出这个值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系,将曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系, 的极坐标方程为.
(Ⅰ)求曲线的参数方程;
(Ⅱ)过原点且关于轴对称的两条直线与分别交曲线于、和、,且点在第一象限,当四边形的周长最大时,求直线的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()经过点,离心率为,,分别为椭圆的左、右焦点.
(1)求椭圆C的标准方程;
(2)若点()在椭圆C上,求证;直线与直线关于直线l:对称.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足bcosA﹣asinB=0.
(1)求A;
(2)已知a=2,B=,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.
(Ⅰ)求的极坐标方程和曲线的参数方程;
(Ⅱ)求曲线的内接矩形的周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中AD∥BC,DA⊥AB,AD=2,AB=BC=1,CD,点E为PD中点.
(1)求证:CE∥平面PAB;
(2)若PA=2,PD=2,∠PAB,求平面PBD与平面ECD所成锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com