精英家教网 > 高中数学 > 题目详情
6.已知四面体ABCD的侧面展开图如图所示,则其体积为(  )
A.2B.$\frac{3}{2}$C.$\frac{3}{4}$D.$\frac{2}{3}$

分析 利用展开图判断三棱锥的底面形状,推出棱长,然后求解几何体的体积.

解答 解:由题意可知三棱锥的底面是等腰直角三角形,腰长为:$\sqrt{2}$,斜边为:2,
3条侧棱相等为:$\sqrt{5}$.
如图:△BOC≌△BOA≌△BOD,
可得BO是三棱锥的高为2.
四面体ABCD的体积为:$\frac{1}{3}×\frac{1}{2}×CD•OA•OB$=$\frac{1}{3}×\frac{1}{2}×2×1×2$=$\frac{2}{3}$.
故选:D.

点评 本题考查几何体的体积的求法,考查计算能力以及空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线平行于直线x+2y+5=0,一个焦点与抛物线y2=-20x的焦点重合,则双曲线的方程为(  )(  )
A.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1
C.$\frac{3{x}^{2}}{25}$-$\frac{3{y}^{2}}{100}$=1D.$\frac{3{x}^{2}}{100}$-$\frac{3{y}^{2}}{25}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,有一个正方体的木块,E为棱AA1的中点.现因实际需要,需要将其沿平面D1EC将木块锯开.请你画出前面ABB1A1与截面D1EC的交线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,角A,B,C的对边分别为a,b,c.a=15,b=10,A=60°,则sinB=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a∈R,函数f(x)=x|x-a|.
(Ⅰ)当a=2时,将函数f(x)写成分段函数的形式,并作出函数的简图,写出函数y=f(x)的单调递增区间;
(Ⅱ)当a>2时,求函数y=f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,矩形ABCD所在的平面与正方形ADPQ所在的平面相互垂直,E是QD的中点.
(Ⅰ)求证:QB∥平面AEC;
(Ⅱ)求证:平面QDC⊥平面AEC;
(Ⅲ)若AB=1,AD=2,求多面体ABCEQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某食品的保鲜时间t(单位:小时)与储藏温度x(恒温,单位:℃)满足函数关系$t=\left\{\begin{array}{l}64,x≤0\\{2^{kx+6}},x>0.\end{array}\right.$且该食品在4℃的保鲜时间是16小时.
①该食品在8℃的保鲜时间是4小时;
②已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示,那么到了此日13时,甲所购买的食品是否过了保鲜时间是.(填“是”或“否”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.双曲线x2-y2=a(a≠0)的渐近线方程为y=±x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线y=$\sqrt{3}$x与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左右两支分别交于M、N两点,与双曲线C的右准线交于P点,F是双曲线C的右焦点O是坐标原点,若|FO|=|MO|,则$\frac{|NP|}{|MP|}$等于$\sqrt{3}$.

查看答案和解析>>

同步练习册答案