分析 (1)利用凑配法求出f(x),即可求出f(3);
(2)由于f(0)=0,可设二次函数f(x)=ax2+bx(a≠0).利用f(x+1)-f(x)=x+1,可得a(x+1)2+b(x+1)-[ax2+bx]=x+1,化为(2a-1)x+a+b-1=0.此式对于任意实数x恒成立,因此2a-1=0且a+b-1=0,解出即可.
解答 解:(1)f(x-$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$=(x-$\frac{1}{x}$)2+2,∴f(x)=x2+2,
∴f(3)=11;
(2)∵f(0)=0,∴可设二次函数f(x)=ax2+bx(a≠0).
∵f(x+1)-f(x)=x+1,∴a(x+1)2+b(x+1)-[ax2+bx]=x+1,
化为(2a-1)x+a+b-1=0.
此式对于任意实数x恒成立,因此2a-1=0且a+b-1=0,解得a=b=$\frac{1}{2}$.
∴f(x)=$\frac{1}{2}$x2+$\frac{1}{2}$x.
点评 本题考查函数的解析式,考查待定系数法、凑配法,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com