精英家教网 > 高中数学 > 题目详情

【题目】已知函数y=f(x+1)定义域是[﹣2,3],则y=f(2x﹣5)的定义域( )
A.
B.
C.[﹣11,﹣1]
D.[﹣3,7]

【答案】B
【解析】解:∵y=f(x+1)定义域是[﹣2,3],

∴﹣1≤x+1≤4,

∴f(x)的定义域是[﹣1,4],

令﹣1≤2x﹣5≤4,

解得2≤x≤

所以答案是:B.

【考点精析】掌握函数的定义域及其求法是解答本题的根本,需要知道求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】判断下列各组函数是否为相等函数:
⑴f(x)=f(x)= ,g(x)=x﹣5;
⑵f(x)=2x+1(x∈Z),g(x)=2x+1(x∈R);
⑶f(x)=|x+1|,g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣2tx+2,g(x)=ex﹣1+e﹣x+1 , 且函数f(x)的图象关于直线x=1对称.
(1)求函数f(x)在区间[0,4]上最大值;
(2)设 ,不等式h(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;
(3)设F(x)=f(x)+ag(x)﹣2有唯一零点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= + 的定义域为( )
A.[﹣1,2)∪(2,+∞)
B.[﹣1,+∞)
C.(﹣∞,2)∪(2,+∞)
D.(﹣1,2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=x2(x﹣a).
(1)若函数f(x)在区间 内是减函数,求实数a的取值范围;
(2)求函数f(x)在区间[1,2]上的最小值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+ax﹣1(e为自然对数的底数). (Ⅰ)当a=1时,求过点(1,f(1))处的切线与坐标轴围成的三角形的面积;
(Ⅱ)若f(x)≥x2在(0,1)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|(x﹣2m+1)(x﹣m+2)<0},B={x|1≤x+1≤4}.
(1)若m=1,求A∩B;
(2)若A∩B=A,求实数m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】仙游某家具城生产某种家具每件成本为3万元,每件售价为x万元(x>3),月销量为t件,经验表明,t= +10(x﹣6)2 , 其中3<x<6,a为常数.已知销售价格为5万元时,月销量为11件.
(1)求a的值;
(2)求售价定为多少时,该家具的月利润最大,最大值为多少?

查看答案和解析>>

同步练习册答案