精英家教网 > 高中数学 > 题目详情
在标准正态分布中我们常设P(X<x0)=Φ(x0),根据标准正态曲线的对称性有性质:P(X>x0)=1-Φ(x0).若X~N(μ,σ2),记P(X<x0)=F(x0)=Φ(
x0σ
)

某中学高考数学成绩近似地服从正态分布N(100,100),求此校数学成绩在120分以上的考生占总人数的百分比.(Φ(2)≈0.977)
分析:用X表示此中学数学高考成绩,则X~N(100,102),根据X~N(μ,σ2),要求的P(X>120)=1-P(X≤120)=1-Φ(
120-100
10
)
,解出要求的概率,得到结果.
解答:解:∵用X表示此中学数学高考成绩,则X~N(100,102),
P(X>x0)=1-Φ(x0).
X~N(μ,σ2),记P(X<x0)=F(x0)=Φ(
x0
σ
)

∴P(X>120)=1-P(X≤120)=1-Φ(
120-100
10
)
≈0.023.
∴120分以上的考生人数为1000×0.023=23.
点评:本题考查正态分布曲线的特点及曲线所表示的意义,是一个计算题但是运算量比较小,注意解题过程中应用题目中所给的公式.
练习册系列答案
相关习题

科目:高中数学 来源:2012年苏教版高数选修2-3 2.1随机变量概率分布二项分布练习卷(解析版) 题型:解答题

在标准正态分布中我们常设P(X<x0)=Φ(x0),根据标准正态曲线的对称性有性质:P(X>x0)=1-Φ(x0).若X~N(μ,σ2),记P(X<x0)=F(x0)=.

某中学高考数学成绩近似地服从正态分布N(100, 100),求此校数学成绩在120分以上的考生占总人数的百分比.(Φ(2)≈0.977)

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在标准正态分布中我们常设P(X<x0)=Φ(x0),根据标准正态曲线的对称性有性质:P(X>x0)=1-Φ(x0).若X~N(μ,σ2),记P(X<x0)=F(x0)=数学公式
某中学高考数学成绩近似地服从正态分布N(100,100),求此校数学成绩在120分以上的考生占总人数的百分比.(Φ(2)≈0.977)

查看答案和解析>>

科目:高中数学 来源: 题型:

在标准正态分布中我们常设P(X<x0)=Φ(x0),根据标准正态曲线的对称性有性质:P(X>x0)=1-Φ(x0).若X~N(μ,σ2),记P(X<x0)=F(x0)=Φ().

某市有280名高一学生参加计算机操作比赛,等级分为10分,随机调阅了60名学生的成绩,见下表:

成绩(分)

1

2

3

4

5

6

7

8

9

10

人数(个)

0

0

0

6

15

21

12

3

3

0

(1)求样本的平均成绩和标准差;

(2)若总体服从正态分布,求正态曲线的近似方程(提示:μ,σ分别可用样本的均值和标准差估计);

(3)若规定比赛成绩在7分或7分以上的学生参加省级比赛,试估计有多少学生可以进入省级比赛?(参考数值:φ(0.82)=0.793 9)

查看答案和解析>>

科目:高中数学 来源:《2.1-2.2 随机变量及其概率分布、二项分布》2011年同步练习(解析版) 题型:解答题

在标准正态分布中我们常设P(X<x)=Φ(x),根据标准正态曲线的对称性有性质:P(X>x)=1-Φ(x).若X~N(μ,σ2),记P(X<x)=F(x)=
某中学高考数学成绩近似地服从正态分布N(100,100),求此校数学成绩在120分以上的考生占总人数的百分比.(Φ(2)≈0.977)

查看答案和解析>>

同步练习册答案