精英家教网 > 高中数学 > 题目详情
12.设函数f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意的x∈[a,b],都有|f(x)-g(x)|≤1,则称f(x)与g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=lnx与g(x)=$\frac{mx-1}{x}$在[$\frac{1}{e}$,e]上是“密切函数”,则实数m的取值范围是[e-2.2].

分析 由“e度和谐函数”,得到对任意的x∈[$\frac{1}{e}$,e],都有|f(x)-g(x)|≤1,化简整理得m-e≤lnx+$\frac{1}{x}$≤m+e,
令h(x)=lnx+$\frac{1}{x}$($\frac{1}{e}$≤x≤e),求出h(x)的最值,只要m-1不大于最小值,且m+1不小于最大值即可.

解答 解:∵函数f(x)=lnx与g(x)=$\frac{mx-1}{x}$在[$\frac{1}{e}$,e],
∴对任意的x∈[$\frac{1}{e}$,e],都有|f(x)-g(x)|≤1,
即有|lnx-$\frac{mx-1}{x}$|≤1,即m-1≤lnx+$\frac{1}{x}$≤m+1,
令h(x)=lnx+$\frac{1}{x}$($\frac{1}{e}$≤x≤e),h′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$,
x>1时,h′(x)>0,x<1时,h′(x)<0,
x=1时,h(x)取极小值1,也为最小值,
故h(x)在[$\frac{1}{e}$,e]上的最小值是1,最大值是e-1.
∴m-1≤1且m+1≥e-1,
∴e-2≤m≤2.
故答案为:[e-2,2].

点评 本题考查新定义及运用,考查不等式的恒成立问题,转化为求函数的最值,注意运用导数求解,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.三棱柱ABC-A1B1C1中,△ABC是等边三角形,AA1⊥底面ABC,AB=2,AA1=$\sqrt{2}$,则异面直线AC1与B1C所成的角的大小是(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,第n个三角形数为$\frac{{n({n+1})}}{2}=\frac{1}{2}{n^2}+\frac{1}{2}$n.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:
三角形数     N(n,3)=$\frac{1}{2}{n^2}+\frac{1}{2}$n
正方形数      N(n,4)=n2
五边形数      N(n,5)=$\frac{3}{2}{n^2}-\frac{1}{2}$n
六边形数      N(n,6)=2n2-n
可以推测N(n,k)的表达式,由此计算N(10,24)=1000.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,矩形BDEF垂直于正方形ABCD,GC垂直于平面ABCD,且AB=DE,CG=$\frac{1}{2}$DE.
(1)证明:面GEF⊥面AEF;
(2)求二面角B-EG-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设$\overrightarrow{a}$,$\overrightarrow{b}$是不共线的两个单位向量,已知$\overrightarrow{AB}$=2$\overrightarrow{a}$+k$\overrightarrow{b}$,$\overrightarrow{BC}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{CD}$=$\overrightarrow{a}$-2$\overrightarrow{b}$.
(1)已知$\overrightarrow{a}$⊥$\overrightarrow{b}$,若$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,求k的值;
(2)若A,B,D三点共线,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将三项式(x2+x+1)n展开,当n=0,1,2,3,…时,得到以下等式:
(x2+x+1)0=1
(x2+x+1)1=x2+x+1(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1

观察多项式系数之间的关系,可以仿照杨辉三角构造如图所示的广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数的,缺少的数计为0)之和,第k行共有2k+1个数.若在(1+ax)(x2+x+1)5的展开式中,x7项的系数为75,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,x∈R,则f(x)零点的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3,设a>-1,且当x∈[-$\frac{a}{2}$,$\frac{1}{2}$]时,f(x)≤g(x),则a的取值范围是(-1,$\frac{4}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,m),且$\overrightarrow{a}⊥\overrightarrow{b}$,则实数m=-2.

查看答案和解析>>

同步练习册答案